簡易檢索 / 詳目顯示

研究生: 盧冰洋
Lu, BingYang
論文名稱: 一般資優和數學優異高中生在解決幾何面積問題 之腦電位相關分析
An ERP Analysis associated with Solving Geometric Area Problems in General Gifted and Excellence in Mathematics High School Students
指導教授: 許慧玉
Hsu, Hui-Yu
口試委員: 陳建誠
Chen, Jian-Cheng
王子華
Wang, Tzu-Hua
學位類別: 碩士
Master
系所名稱: 竹師教育學院 - 數理教育研究所
Graduate Institute of Mathematics and Science Education
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 91
中文關鍵詞: 事件相關電位腦波資優一般資優數學優異幾何幾何面積問題高中生
外文關鍵詞: general gifted, geometry-area problems
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究透過本研究透過腦波研究中的事件相關電位研究法 (ERP )探究一般資優(G)和數學優異(EM)因子對於學生在解決與幾何面積相關的問題時,正確率(Acc)和反應時間(RT)之表現以及大腦啟動區域的顯著影響。本研究對 162 名 10-11 年級的高中生進行了抽樣調查,並根據 G 和 EM 因子的組合,將學生分成八個實驗組。數據分析將透過兩種方式進行分析,第一種是行為測量,側重於分析 G 和 EM 因子在解決幾何面積問題中對正確率(Acc)和答對題目的反應時間 (RT)的影響。另一種是腦波測量,主要運用ERP成分和腦波平均振幅分析大腦不同區域的反應差異,並分析G 和 EM 因子對 ERP 成分的影響。
    本研究的結果如下:在行為測量方面,(1) 一般資優學生和數學優異學生比非一般資優和非數學優異學生表現出更高的正確率和更短的答對題目反應時間。 (2) 被認定一般資優但非數學優異之學生(G-NEM)花費的反應時間最長。 (3) G 和 EM 因子都顯著影響學生解決幾何面積問題的表現。在事件相關電位測量中,(4)G和EM因子學生在不同的問題解決階段啟動了不同的大腦區域,(5)但在解決問題時投入了相似的腦力活躍程度並表現出相似的推理過程。 (6) 然而,被認為一般資優和數學優異的學生比非一般資優和非數學優異的學生投入了更多的腦力活躍程度。最後,(7) G 和 EM 因子對行為和事件相關電位測量沒有交互影響。這些發現建議進一步研究透過特徵識別一般資優和數學優異的學生,並為他們提供適應性教育以培養和發展他們的數學能力。


    The goal of the current study is to investigate the significant effects of the general giftedness (G) and excellence in mathematics (EM) factors on accuracy (Acc) and reaction time (RT) performance and brain activation in solving area-related geometric problems by using electrophysiological measures. This study sampled 162 grade 10-11 high-school students. Students were distributed into eight experimental groups by a combination of the G and EM factors. The data were analyzed in two measurements. One is the behavioral measures, which focused on the effects of the G and EM factors on the accuracy (Acc) and reaction time (RT) on the correct responses in solving the geometry-area test. The other is the electrophysiological measures, which focused on the ERP components and the values distributed in the brain regions. The effects of the G and EM factors on the ERP components were also analyzed.
    The results revealed several dimensions: in the behavioral measures, (1) the giftedness students and excellence in mathematics students performed higher accuracy and less reaction time than non-giftedness and excellence in mathematics students. (2) Giftedness but not excellence in mathematics students (G-NEM) spent the longest reaction time. (3) Both the G and EM factors significantly affected students’ performance in solving the geometry-area problems. In the electrophysiological measures, (4) the two factors students activated different brain regions at different problem-solving stages, (5) but devoted similar brain efforts and demonstrated similar reasoning process in solving the problems. (6) However, students identified as general giftedness and excellence in mathematics invested more brainwork than non-giftedness and excellence in mathematics students. Lastly, (7) the G and EM factors had no interaction effects on both behavioral and electrophysiological measurements. Such findings suggested further investigation on identifying general giftedness and excellence in mathematics students through characteristics and provide adaptive education in cultivating and developing their mathematical abilities.

    Abstract 2 摘要 3 Acknowledgment 4 Table of Contents 5 List of Tables 7 List of Figures 10 1 Introduction 11 1.1 Research Background and Purpose 11 1.2 Research Objectives 13 1.3 Defining Terms 13 1.3.1 Area 13 1.3.2 G factor 13 1.3.3 EM factor 13 1.3.4 High School Students 14 1.4 Research Limitation 14 2 Literature Review 15 2.1 Curriculum Standards of Area of Figures 15 2.2 Giftedness and Excellence in Mathematics 18 2.3 Neuro-cognitive Research 21 2.3.1 Mathematics in Neuroscience Research 21 2.3.2 ERP Components 22 3 Methodology 25 3.1 Research Design 25 3.2 Participants 25 3.2.1 Eight Experimental Groups 25 3.3 Research Instruments 26 3.3.1 Paper Test 26 3.3.2 Computerized Test and E-Prime Software 27 3.3.3 ERP Methodology 29 3.4 Data Collection 31 3.4.1 Test Room Environment 31 3.4.2 Before the Experiment 33 3.4.3 Running the Experiment 35 3.4.4 After the Experiment 36 3.5 Data Analysis 36 3.5.1 Behavioral measures 36 3.5.2 Electrophysiological measures 37 3.6 Statistical Analysis Method 40 4 Results 41 4.1 Behavioral Measures 41 4.1.1 Acc and RT on the overall geometry-area test 41 4.1.2 Acc and RT on two types of problems 43 4.1.3 Comparison between types of problems and within the factors 46 4.2 Electrophysiological Measures 56 4.2.1 Early ERP Components 57 4.2.2 Early ERP Components with the G and EM factors 67 4.2.3 Late ERP Components 74 4.2.4 Late ERP Components with the G and EM factors 80 5 Conclusions 84 References 88

    Anderson, J. R., Qin, Y., Sohn, M.-H., Stenger, V. A., & Carter, C. S. (2003). An information-processing model of the BOLD response in symbol manipulation tasks. Psychonomic Bulletin & Review, 10(2), 241-261.
    Ansari, D., & Lyons, I. M. (2016). Cognitive neuroscience and mathematics learning: how far have we come? Where do we need to go? ZDM, 48(3), 379-383.
    Badre, D., & Wagner, A. D. (2007). Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia, 45(13), 2883-2901.
    Baturo, A., & Nason, R. (1996). Student teachers' subject matter knowledge within the domain of area measurement. Educational studies in mathematics, 31(3), 235-268.
    Binet, A., & Simon, T. (1905). Sur la ne cessite d’e tablir un diagnostic scientifi-que des. etats inferieurs de l’intelligence. L’Annee Psychologique, 11, 163-190.
    Butterworth, B. (2006). Mathematical expertise. The Cambridge handbook of expertise and expert performance, 553-568.
    Byrnes, J. P., & Fox, N. A. (1998). The educational relevance of research in cognitive neuroscience. Educational Psychology Review, 10(3), 297-342.
    Clements, D. H. (2003). Learning and Teaching Measurement (2003 Yearbook): ERIC.
    Clements, D. H., & Stephan, M. (2004). Measurement in pre-K to grade 2 mathematics. Engaging young children in mathematics: Standards for early childhood mathematics education, 299-317.
    Czigler, I., Balázs, L., & Winkler, I. (2002). Memory-based detection of task-irrelevant visual changes. Psychophysiology, 39(6), 869-873.
    Danker, J. F., & Anderson, J. R. (2007). The roles of prefrontal and posterior parietal cortex in algebra problem solving: A case of using cognitive modeling to inform neuroimaging data. Neuroimage, 35(3), 1365-1377.
    Dark, V. J., & Benbow, C. P. (1990). Enhanced problem translation and short-term memory: Components of mathematical talent. Journal of educational psychology, 82(3), 420.
    Davidson, J. E., Sternberg, R. J., & Sternberg, R. J. (2003). The psychology of problem solving: Cambridge university press.
    De Smedt, B., Ansari, D., Grabner, R. H., Hannula, M. M., Schneider, M., & Verschaffel, L. (2010). Cognitive neuroscience meets mathematics education. Educational Research Review, 5(1), 97-105.
    Deary, I. J., & Caryl, P. G. (1997). Neuroscience and human intelligence differences. Trends in Neurosciences, 20(8), 365-371.
    Dehaene, S., Molko, N., Cohen, L., & Wilson, A. J. (2004). Arithmetic and the brain. Current opinion in neurobiology, 14(2), 218-224.
    Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive neuropsychology, 20(3-6), 487-506.
    Delazer, M., Domahs, F., Bartha, L., Brenneis, C., Lochy, A., Trieb, T., & Benke, T. (2003). Learning complex arithmetic—an fMRI study. Cognitive Brain Research, 18(1), 76-88.
    Donchin, E. (1981). Surprise!… surprise? Psychophysiology, 18(5), 493-513.
    Education, M. o. (2014). General guidelines of grades 1-12 curriculum for elementary and senior high school education. Taipei, Taiwan: Author.
    Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological review, 102(2), 211.
    Ericsson, K. A., & Lehmann, A. C. (1996). Expert and exceptional performance: Evidence of maximal adaptation to task constraints. Annual review of psychology, 47(1), 273-305.
    Fischbein, E. (1993). The theory of figural concepts. Educational studies in mathematics, 24(2), 139-162.
    Frey, M. C., & Detterman, D. K. (2004). Scholastic assessment or g? The relationship between the scholastic assessment test and general cognitive ability. Psychological science, 15(6), 373-378.
    Fuys, D., Geddes, D., & Tischler, R. (1988). The van Hiele model of thinking in geometry among adolescents. Journal for Research in Mathematics Education. Monograph, 3, i-196.
    Gazzaniga, M. S., Ivry, R. B., & Mangun, G. (2018). Cognitive Neuroscience. The biology of the mind,(2014). In: Norton: New York.
    Gevins, A., & Smith, M. E. (2000). Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style. Cerebral cortex, 10(9), 829-839.
    Grupp, H., Dominguez-Lacasa, I., & Friedrich-Nishio, M. (2005). The national German innovation system: Its development in different governmental and territorial structures. Economics, Evolution and the State: The Governance of Complexity, 239-273.
    Heil, M. (2002). The functional significance of ERP effects during mental rotation. Psychophysiology, 39(5), 535-545.
    Hillyard, S. A., & Anllo-Vento, L. (1998). Event-related brain potentials in the study of visual selective attention. Proceedings of the National Academy of Sciences, 95(3), 781-787.
    Horn, J. L., & Cattell, R. B. (1966). Refinement and test of the theory of fluid and crystallized general intelligences. Journal of educational psychology, 57(5), 253.
    Huang, H.-M. E., & Witz, K. G. (2011). Developing children's conceptual understanding of area measurement: A curriculum and teaching experiment. Learning and instruction, 21(1), 1-13.
    Initiative, C. C. S. S. (2010). Common Core State Standards for mathematics. Retrieved from http://www.corestandards.org/assets/CCSSI_Math%20St
    Irwin, K. C., Ell, F. R., & Vistro-Yu, C. P. (2004). Understanding linear measurement: A comparison of Filipino and New Zealand children. Mathematics Education Research Journal, 16(2), 3-24.
    Jaušovec, N., & Jaušovec, K. (2004). Differences in induced brain activity during the performance of learning and working-memory tasks related to intelligence. Brain and Cognition, 54(1), 65-74.
    Jeffreys, D. (1989). A face-responsive potential recorded from the human scalp. Experimental brain research, 78(1), 193-202.
    Jung, R. E., & Haier, R. J. (2007). The Parieto-Frontal Integration Theory (P-FIT) of intelligence: converging neuroimaging evidence. Behavioral and brain sciences, 30(2), 135.
    Krutetskii, V. A., WIRSZUP, I., & Kilpatrick, J. (1976). The psychology of mathematical abilities in schoolchildren: University of Chicago Press.
    Leikin, M., Paz-Baruch, N., & Leikin, R. (2013). Memory abilities in generally gifted and excelling-in-mathematics adolescents. Intelligence, 41(5), 566-578.
    Leikin, M., Waisman, I., & Leikin, R. (2013). How brain research can contribute to the evaluation of mathematical giftedness. Psychological Test and Assessment Modeling, 55(4), 415.
    Leikin, R. (2009). Bridging research and theory in mathematics education with research and theory in creativity and giftedness. In Creativity in mathematics and the education of gifted students (pp. 383-411): Brill Sense.
    Leikin, R. (2014). Giftedness and high ability in mathematics. Encyclopedia of mathematics education, 247-251.
    Leikin, R., Waisman, I., & Leikin, M. (2016). Does solving insight-based problems differ from solving learning-based problems? Some evidence from an ERP study. ZDM, 48(3), 305-319.
    Lerman, S. (2014). Encyclopedia of mathematics education: Springer Netherlands.
    Lev, M., & Leikin, R. (2013). The connection between mathematical creativity and high ability in mathematics. Paper presented at the Proceedings of the Eight Congress of the European Society for Research in Mathematics Education (CERME8).
    Luck, S. J. (2014). An introduction to the event-related potential technique: MIT press.
    Luck, S. J., & Hillyard, S. A. (1994). Spatial filtering during visual search: evidence from human electrophysiology. Journal of Experimental psychology: Human perception and performance, 20(5), 1000.
    Mathematics, N. C. o. T. o. (2000). Principles and standards for school mathematics (Vol. 1): Reston, VA: NCTM.
    Menon, R. (1998). Preservice teachers' understanding of perimeter and area. School Science and Mathematics, 98(7), 361-367.
    Milgram, R. M., & Hong, E. (2009). Talent loss in mathematics: Causes and solutions. In Creativity in mathematics and the education of gifted students (pp. 147-163): Brill Sense.
    Neubauer, A. C., Fink, A., & Schrausser, D. G. (2002). Intelligence and neural efficiency: The influence of task content and sex on the brain–IQ relationship. Intelligence, 30(6), 515-536.
    Nitabach, E., & Lehrer, R. (1996). Research into practice: Developing spatial sense through area measurement. Teaching Children Mathematics, 2(8), 473-476.
    O'Boyle, M. W. (2008). Mathematically gifted children: Developmental brain characteristics and their prognosis for well-being. Roeper Review, 30(3), 181-186.
    Owens, K., & Outhred, L. (2006). The complexity of learning geometry and measurement. In Handbook of research on the psychology of mathematics education (pp. 83-115): Brill Sense.
    Piirto, J. (1994). Talented children and adults: Their development and education: ERIC.
    Polya, G. (2004). How to solve it: A new aspect of mathematical method (Vol. 85): Princeton university press.
    Raven, J., Court, J., & Raven, J. C. (1998). Manual for Raven's progressive matrices and vocabulary scales.
    Renzulli, J. S. (1978). What makes giftedness? Reexamining a definition. Phi Delta Kappan, 60(3), 180.
    Renzulli, J. S. (2005). Applying gifted education pedagogy to total talent development for all students. Theory into practice, 44(2), 80-89.
    Ruchkin, D. S., Johnson Jr, R., Mahaffey, D., & Sutton, S. (1988). Toward a functional categorization of slow waves. Psychophysiology, 25(3), 339-353.
    Santens, S., Roggeman, C., Fias, W., & Verguts, T. (2010). Number processing pathways in human parietal cortex. Cerebral cortex, 20(1), 77-88.
    Schneider, W., Bolger, D., Eschman, A., Neff, C., & Zuccolotto, A. P. (2005). Psychology Experiment Authoring Kit (PEAK): Formal usability testing of an easy-to-use method for creating computerized experiments. Behavior research methods, 37(2), 312-323.
    Shavinina, L. V. (2009). International handbook on giftedness: Springer.
    Silverman, L. K. (2009). The measurement of giftedness. In International handbook on giftedness (pp. 947-970): Springer.
    Smith, J. P., van den Heuvel-Panhuizen, M., & Teppo, A. R. (2011). Learning, teaching, and using measurement: introduction to the issue. In: Springer.
    Spapé, M., Verdonschot, R., & Steenbergen, H. (2019). The E-Primer: An introduction to creating psychological experiments in E-Prime. Second edition updated for E-Prime 3.
    Stanley, J. C., & Benbow, C. P. (1986). Youths who reason exceptionally well mathematically. Conceptions of giftedness, 361-387.
    Statistics, N. C. f. E. (2012). International data explorer. Retrieved from http://nces.ed.gov/surveys/international/ide/.
    Steele, M. D. (2013). Exploring the mathematical knowledge for teaching geometry and measurement through the design and use of rich assessment tasks. Journal of Mathematics Teacher Education, 16(4), 245-268.
    Steiner, H. H., & Carr, M. (2003). Cognitive development in gifted children: Toward a more precise understanding of emerging differences in intelligence. Educational Psychology Review, 15(3), 215-246.
    Sternberg, R. J., & Davidson, J. E. (2005). Conceptions of giftedness: Cambridge University Press.
    Sternberg, R. J., & Grigorenko, E. L. (2002). The general factor of intelligence: How general is it? : Psychology Press.
    Terao, A., Koedinger, K. R., Sohn, M.-H., Qin, Y., Anderson, J. R., & Carter, C. S. (2004). An fMRI study of the interplay of symbolic and visuo-spatial systems in mathematical reasoning. Paper presented at the Proceedings of the Annual Meeting of the Cognitive Science Society.
    Terman, L. M., & Oden, M. H. (1947). The gifted child grows up: Twenty-five years' follow-up of a superior group.
    Thurstone, L. L., & Thurstone, T. G. (1938). Primary mental abilities (Vol. 119): University of Chicago Press Chicago.
    Vernon, P. A. (1993). Biological approaches to the study of human intelligence: Praeger.
    Vogel, E. K., Luck, S. J., & Shapiro, K. L. (1998). Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink. Journal of Experimental psychology: Human perception and performance, 24(6), 1656.
    Waisman, I., Leikin, M., & Leikin, R. (2016). Brain activity associated with logical inferences in geometry: focusing on students with different levels of ability. ZDM, 48(3), 321-335. doi:10.1007/s11858-016-0760-5
    Waisman, I., Leikin, M., Shaul, S., & Leikin, R. (2014). Brain activity associated with translation between graphical and symbolic representations of functions in generally gifted and excelling in mathematics adolescents. International Journal of Science and Mathematics Education, 12(3), 669-696.
    Wechsler, I. S. (1939). A Textbook of Clinical Neurology, with an Introduction to the History of Neurology.
    Yuan, Y., Lee, C.-Y., & Huang, J.-R. (2007). Developing Geometry Software for Exploration-Geometry Player. Research in Mathematical Education, 11(3), 209-218.
    Zacharos, K. (2006). Prevailing educational practices for area measurement and students’ failure in measuring areas. The Journal of Mathematical Behavior, 25(3), 224-239.
    Zohar, A. (1990). Mathematical reasoning ability: Its structure, and some aspects of its genetic transmission: Hebrew University of Jerusalem.

    QR CODE