研究生: |
吳東曄 Wu, Dung-Yeh |
---|---|
論文名稱: |
DSGb5合成方法之開發 Methods toward the Total Synthesis of DSGb5 |
指導教授: |
林俊成
Lin, Chun-Cheng |
口試委員: |
蒙國光
Mong, Kwok-Kong 梁健夫 Liang, Chien-Fu |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 142 |
中文關鍵詞: | 多醣體之全合成 、腫瘤相關抗原 、腎臟癌細胞 |
外文關鍵詞: | DSGb5, RCC cells, Chemoenzymatic Synthesis |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
DSGb5是腎臟癌細胞上重要的腫瘤相關抗原,同時也被發現於肝癌以及前列腺癌,對於癌細胞的增生以及轉移有很高的關聯性,因此了解DSGb5在生物體中所扮演的角色極為重要,然而DSGb5至今仍未發展出有效的合成策略,在取得不易的情況下,關於DSGb5在癌症相關領域的研究仍有很大的限制。
本論文嘗試以實驗室所建立的酵素系統並結合化學合成策略用運用於DSGb5之合成,在此合成策略中,關鍵步驟為以Gb3衍生物受體進行[2+3]醣基化反應,此步驟中同時面臨位向及立體選擇性的問題,因此本論文主要探討將非還原端之半乳糖四號羥基以不同保護基做保護以及嘗試其它反應條件,試圖解決選擇性以及低產率的問題,並搭配使用核磁共振光譜及參照實驗室利用全酵素反應所建構之Gb5,以確認產物結構,目前已成功地合成出Gb5以及釐清以不同Gb3衍生物受體進行[2+3]醣基化反應後所產生之五醣結構。未來將以目前開發出的合成策略有效地合成DSGb5完成。
Disialosyl globopentosylceramide (DSGb5) is a kind of ganglioside, which was isolated from renal cell carcinoma (RCC) tissue extracts. Current studies indicate that DSGb5 of cell surface may involve in the metastatic capability of cancer cells, thereby enhancing cell migration. However, the effective method for the synthesis of DSGb5 has not yet been reported. Development of a new synthetic route to access DSGb5 is an important starting point to study its roles in biological systems.
In this thesis, developed a new strategy to synthesize DSGb5 precursor, Gb 5. The key step in this strategy is [2+3] glycosylation to yield Gb5. The trisaccharide acceptor Gb3 was synthesized by enzymatic method to avoid the drawback of selectivity in chemical synthesis of 1,2-cis glycosidic bond while the disaccharide was prepared by borinic ester assisted glycosylation. Many protected Gb3 acceptors were synthesized and evaluated for their efficiency and selectivity in glycosylation with disaccharide donor. The structure of pentasaccharides were identified by 2D NMR spectrum and comparison of the proton NMR spectra with Gb5 (obtained by enzymatic method) spectum. The protected Gb5 structure was unambiguously determined. Thus, the developed method has paved a route for the future synthesis of DSGb5 by chemoenzymatic strategy.
1. Schengrund, C. L., Gangliosides: glycosphingolipids essential for normal neural development and function. Trends Biochem. Sci. 2015, 40, 397-406.
2. Varki, A.; Gagneux, P., Multifarious roles of sialic acids in immunity. Ann. NY. Acad. Sci. 2012, 1253, 16-36.
3. Ohtsubo, K.; Marth, J. D., Glycosylation in cellular mechanisms of health and disease. Cell 2006, 126, 855-867.
4. Marth, J. D.; Grewal, P. K., Mammalian glycosylation in immunity. Nat. Rev. Immunol 2008, 8, 874-887.
5. Varki, A.; Lowe, J. B., Biological Roles of Glycans. In Essentials of Glycobiology, 2009.
6. Saldova, R.; Royle, L.; Radcliffe, C. M.; Hamid, U. M. A.; Evans, R.; Arnold, J. N.; Banks, R. E.; Hutson, R.; Harvey, D. J.; Antrobus, R.; Petrescu, S. M.; Dwek, R. A.; Rudd, P. M., Ovarian cancer is associated with changes in glycosylation in both acute-phase proteins and IgG. Glycobiology 2007, 17, 1344-1356.
7. Miyoshi, E.; Nakano, M., Fucosylated haptoglobin is a novel marker for pancreatic cancer: Detailed analyses of oligosaccharide structures. Proteomics 2008, 8, 3257-3262.
8. Comunale, M. A.; Wang, M. J.; Hafner, J.; Krakover, J.; Rodemich, L.; Kopenhaver, B.; Long, R. E.; Junaidi, O.; Di Bisceglie, A. M.; Block, T. M.; Mehta, A. S., Identification and Development of Fucosylated Glycoproteins as Biomarkers of Primary Hepatocellular Carcinoma. J. Proteome Res. 2009, 8, 595-602.
9. Saldova, R.; Fan, Y.; Fitzpatrick, J. M.; Watson, R. W.; Rudd, P. M., Core fucosylation and alpha2-3 sialylation in serum N-glycome is significantly increased in prostate cancer comparing to benign prostate hyperplasia. Glycobiology 2011, 21, 195-205.
10. Cotton, S.; Azevedo, R.; Gaiteiro, C.; Ferreira, D.; Lima, L.; Peixoto, A.; Fernandes, E.; Neves, M.; Neves, D.; Amaro, T.; Cruz, R.; Tavares, A.; Rangel, M.; Silva, A. M. N.; Santos, L. L.; Ferreira, J. A., Targeted O-glycoproteomics explored increased sialylation and identified MUC16 as a poor prognosis biomarker in advanced-stage bladder tumours. Mol. Oncol. 2017, 11, 895-912.
11. Heimburg-Molinaro, J.; Lum, M.; Vijay, G.; Jain, M. T.; Almogren, A.; Rittenhouse-Olson, K., Cancer vaccines and carbohydrate epitopes. Vaccine 2011, 29, 8802-8826.
12. Springer, G. F., Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy. J. Mol. Med. 1997, 75, 594-602.
13. Fu, C.; Zhao, H.; Wang, Y.; Cai, H.; Xiao, Y.; Zeng, Y.; Chen, H., Tumor-associated antigens: Tn antigen, sTn antigen, and T antigen. HLA 2016, 88, 275-286.
14. Cazet, A.; Julien, S.; Bobowski, M.; Burchell, J.; Delannoy, P., Tumour-associated carbohydrate antigens in breast cancer. Breast Cancer Res. 2010, 12, 204.
15. Puisieux, A.; Brabletz, T.; Caramel, J., Oncogenic roles of EMT-inducing transcription factors. Nat. Cell Biol. 2014, 16, 488-94.
16. Ye, J.; Wei, X.; Shang, Y.; Pan, Q.; Yang, M.; Tian, Y.; He, Y.; Peng, Z.; Chen, L.; Chen, W.; Wang, R., Core 3 mucin-type O-glycan restoration in colorectal cancer cells promotes MUC1/p53/miR-200c-dependent epithelial identity. Oncogene 2017, 36, 6391-6407.
17. Kawasaki, Y.; Ito, A.; Withers, D. A.; Taima, T.; Kakoi, N.; Saito, S.; Arai, Y., Ganglioside DSGb5, preferred ligand for Siglec-7, inhibits NK cell cytotoxicity against renal cell carcinoma cells. Glycobiology 2010, 20, 1373-1379.
18. Kawasaki, Y.; Ito, A.; Kakoi, N.; Shimada, S.; Itoh, J.; Mitsuzuka, K.; Arai, Y., Ganglioside, Disialosyl Globopentaosylceramide (DSGb5), Enhances the Migration of Renal Cell Carcinoma Cells. Tohoku J. Exp. Med. 2015, 236, 1-7.
19. Itoh, J.; Ito, A.; Shimada, S.; Kawasaki, Y.; Kakoi, N.; Saito, H.; Mitsuzuka, K.; Watanabe, M.; Satoh, M.; Saito, S.; Arai, Y., Clinicopathological significance of ganglioside DSGb5 expression in renal cell carcinoma. Glycoconjugate J 2017, 34, 267-273.
20. Blix, F. G.; Gottschalk, A.; Klenk, E., Proposed Nomenclature in the Field of Neuraminic and Sialic Acids. Nature 1957, 179, 1088-1088.
21. Crocker, P. R.; Varki, A., Siglecs in the immune system. Immunology 2001, 103, 137-145.
22. Varki, A., Sialic acids in human health and disease. Trends Mol. Med. 2008, 14, 351-360.
23. Fuster, M. M.; Esko, J. D., The sweet and sour of cancer: Glycans as novel therapeutic targets. Nat. Rev. Cancer 2005, 5, 526-542.
24. Colley, K. J.; Kitajima, K.; Sato, C., Polysialic acid: Biosynthesis, novel functions and applications. Crit. Rev. Biochem. Mol. 2014, 49, 498-532.
25. Janas, T.; Janas, T., Membrane oligo- and polysialic acids. Bba-Biomembranes 2011, 1808, 2923-2932.
26. Li, S. P.; Hsiao, W. C.; Yu, C. C.; Chien, W. T.; Lin, H. J.; Huang, L. D.; Lin, C. H.; Wu, W. L.; Wu, S. H.; Lin, C. C., Characterization of Meiothermus taiwanensis Galactokinase and its Use in the One-Pot Enzymatic Synthesis of Uridine Diphosphate-Galactose and the Chemoenzymatic Synthesis of the Carbohydrate Antigen Stage Specific Embryonic Antigen-3. Adv. Synth. Catal. 2014, 356, 3199-3213.
27. Litterer, L. A.; Schnurr, J. A.; Plaisance, K. L.; Storey, K. K.; Gronwald, J. W.; Somers, D. A., Characterization and expression of Arabidopsis UDP-sugar pyrophosphorylase. Plant Physiol. Biochem. 2006, 44, 171-180.
28. Zhang, J. B.; Kowal, P.; Fang, J. W.; Andreana, P.; Wang, P. G., Efficient chemoenzymatic synthesis of globotriose and its derivatives with a recombinant alpha-(1 -> 4)-galactosyltransferase. Carbohydr. Res. 2002, 337, 969-976.
29. Morley, T. J.; Withers, S. G., Chemoenzymatic Synthesis and Enzymatic Analysis of 8-Modified Cytidine Monophosphate-Sialic Acid and Sialyl Lactose Derivatives. J. Am. Chem. Soc. 2010, 132, 9430-9437.
30. Knorst, M.; Fessner, W. D., CMP-sialate synthetase from Neisseria meningitidis - Overexpression and application to the synthesis of oligosaccharides containing modified sialic acids. Adv. Synth. Catal. 2001, 343, 698-710.
31. Yu, H.; Chokhawala, H.; Karpel, R.; Yu, H.; Wu, B. Y.; Zhang, J. B.; Zhang, Y. X.; Jia, Q.; Chen, X., A multifunctional Pasteurella multocida sialyltransferase: A powerful tool for the synthesis of sialoside libraries. J. Am. Chem. Soc. 2005, 127, 17618-17619.
32. Benakli, K.; Zha, C.; Kerns, R. J., Oxazolidinone Protected 2-Amino-2-deoxy-d-glucose Derivatives as Versatile Intermediates in Stereoselective Oligosaccharide Synthesis and the Formation of α-Linked Glycosides. J. Am. Chem. Soc. 2001, 123, 9461-9462.
33. Tanaka, H.; Nishiura, Y.; Takahashi, T., Stereoselective synthesis of oligo-alpha-(2,8)-sialic acids. J. Am. Chem. Soc. 2006, 128, 7124-7125.
34. Hsu, C. H.; Chu, K. C.; Lin, Y. S.; Han, J. L.; Peng, Y. S.; Ren, C. T.; Wu, C. Y.; Wong, C. H., Highly Alpha-Selective Sialyl Phosphate Donors for Efficient Preparation of Natural Sialosides. Chem-Eur. J. 2010, 16, 1754-1760.
35. Xu, H. F.; Lu, Y. C.; Zhou, Y. X.; Ren, B.; Pei, Y. X.; Dong, H.; Pei, Z. C., Regioselective Benzylation of Diols and Polyols by Catalytic Amounts of an Organotin Reagent. Adv. Synth. Catal. 2014, 356, 1735-1740.
36. Dong, H.; Zhou, Y. X.; Pan, X. L.; Cui, F. C.; Liu, W.; Liu, J. Y.; Ramstrom, O., Stereoelectronic Control in Regioselective Carbohydrate Protection. J. Org. Chem. 2012, 77, 1457-1467.
37. Muramatsu, W., Chemo- and Regioselective Monosulfonylation of Nonprotected Carbohydrates Catalyzed by Organotin Dichloride under Mild Conditions. J. Org. Chem. 2012, 77, 8083-8091.
38. Muramatsu, W.; Yoshimatsu, H., Regio- and Stereochemical Controlled Koenigs-Knorr-Type Monoglycosylation of Secondary Hydroxy Groups in Carbohydrates Utilizing the High Site Recognition Ability of Organotin Catalysts. Adv. Synth. Catal. 2013, 355, 2518-2524.
39. Gouliaras, C.; Lee, D.; Chan, L. N.; Taylor, M. S., Regioselective Activation of Glycosyl Acceptors by a Diarylborinic Acid-Derived Catalyst. J. Am. Chem. Soc. 2011, 133, 13926-13929.
40. Lee, D.; Taylor, M. S., Borinic Acid-Catalyzed Regioselective Acylation of Carbohydrate Derivatives. J. Am. Chem. Soc. 2011, 133, 3724-3727.
41. Chan, L. N.; Taylor, M. S., Regioselective Alkylation of Carbohydrate Derivatives Catalyzed by a Diarylborinic Acid Derivative. Org. Lett. 2011, 13, 3090-3093.
42. Lee, D.; Williamson, C. L.; Chan, L. N.; Taylor, M. S., Regioselective, Borinic Acid-Catalyzed Monoacylation, Sulfonylation and Alkylation of Diols and Carbohydrates: Expansion of Substrate Scope and Mechanistic Studies. J. Am. Chem. Soc. 2012, 134, 8260-8267.
43. Wu, C. S.; Yen, C. J.; Chou, R. H.; Li, S. T.; Huang, W. C.; Ren, C. T.; Wu, C. Y.; Yu, Y. L., Cancer-Associated Carbohydrate Antigens as Potential Biomarkers for Hepatocellular Carcinoma. Plos. One 2012, 7.
44. Shimada, S.; Ito, A.; Kawasaki, Y.; Kakoi, N.; Taima, T.; Mitsuzuka, K.; Watanabe, M.; Saito, S.; Arai, Y., Ganglioside disialosyl globopentaosylceramide is an independent predictor of PSA recurrence-free survival following radical prostatectomy. Prostate Cancer P. D. 2014, 17, 199-205.
45. 黃思瑜, 國立清華大學化學研究所, 碩士論文, 民國106年.
46. 蕭偉鎮, 國立清華大學化學研究所, 博士論文, 民國103年.
47. Hronowski, L. J. J.; Szarek, W. A.; Hay, G. W.; Krebs, A.; Depew, W. T., Synthesis and Binding of D-Galactose-Terminated Ligands to Human and Rabbit Asialoglycoprotein Receptor .1. Synthesis and Characterization of 1-O-Beta-Lactosyl-(R,S)-Glycerols and 1,3-Di-O-Beta-Lactosylglycerol. Carbohydr. Res. 1989, 190, 203-218.
48. Allen, J. R.; Danishefsky, S. J., New applications of the n-pentenyl glycoside method in the synthesis and immunoconjugation of fucosyl GM(1): A highly tumor-specific antigen associated with small cell lung carcinoma. J. Am. Chem. Soc. 1999, 121, 10875-10882.
49. Crich, D.; Li, W. J., O-sialylation with N-acetyl-5-N,4-O-carbonyl-protected thiosialoside donors in dichloromethane: Facile and selective cleavage of the oxazolidinone ring. J. Org. Chem. 2007, 72, 2387-2391.
50. Lehtila, R. L.; Lehtila, J. O.; Roslund, M. U.; Leino, R., Selectively protected galactose derivatives for the synthesis of branched oligosaccharides. Tetrahedron 2004, 60, 3653-3661.
51. Shafer, C. M.; Molinski, T. F., Practical synthesis of 2,6-dideoxy-D-lyxo-hexose ("2-deoxy-D-fucose'') from D-galactose. Carbohydr. Res. 1998, 310, 223-228.
52. 官亭君, 國立清華大學化學研究所, 博士論文, 民國103年.
53. 林虹君, 國立清華大學化學研究所, 博士論文, 民國104年.
54. Maki, Y.; Mima, T.; Okamoto, R.; Izumi, M.; Kajihara, Y., Semisynthesis of Complex-Type Biantennary Oligosaccharides Containing Lactosamine Repeating Units from a Biantennary Oligosaccharide Isolated from a Natural Source. J. Org. Chem. 2018, 83, 443-451.