研究生: |
曾妍禎 Tseng, Yen-Jhen |
---|---|
論文名稱: |
間質幹細胞透過細胞間通道促進肺癌細胞產生癌症幹細胞的表型 Tunneling nanotubes-mediated communication between mesenchymal stem cells and lung cancer cells enhances the cancer stem cell phenotype |
指導教授: |
李佳霖
Lee, Jia-Lin |
口試委員: |
張壯榮
Chang, Chuang-Rung 邱于芯 Chiu, Yu-Hsin |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 37 |
中文關鍵詞: | 肺癌 、癌症幹細胞 、間質幹細胞 、細胞通道 、人抗原R蛋白 |
外文關鍵詞: | Lung cancer, Cancer stem cells, Mesenchymal stem cells, Tunneling nanotubes, HuR protein |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來研究發現,癌細胞當中有一小部分細胞具有幹細胞的特性且有助於腫瘤的進展和轉移,稱為癌症幹細胞,而此細胞的產生可能是由於骨髓間質幹細胞與癌細胞之間的訊息傳遞與物質交換進而導致表型的轉變。研究證明,當骨髓間質幹細胞移動至癌細胞附近,細胞間會透過多種方式進行訊息傳遞、促使腫瘤轉移。例如,細胞間相連的通道能夠遞送粒線體以及小分子核糖核酸。然而,骨髓間質幹細胞和肺癌細胞之間是否能藉由此通道影響表型仍然未知。在本研究當中,間質幹細胞與使用CRISPR / Cas9剃除癌症幹細胞相關基因ELAVL1的肺癌細胞HM20共同培養,以研究這兩種細胞株是否能夠形成相連的通道,並且傳遞ELAVL1(HuR)蛋白質進而使癌細胞具有幹細胞的特性。在細胞共同培養24小時後,細胞通道在兩細胞株間形成且利用其傳遞HuR。接下來,將Latrunculin A (細胞通道抑製劑)加入剔除ELAVL1 的HM20細胞中以探討細胞通道的影響,並在共同培養細胞後,利用流式細胞儀細胞儀分選出剔除ELAVL1 的HM20細胞,比較不同數量的細胞通道對癌症幹細胞表型的影響。藉由反轉錄聚合酶連鎖反應,我們發現共同培養後使得剔除ELAVL1 的HM20細胞的癌症幹細胞特性增強,而在加入細胞通道抑制劑後反轉了這個現象。總結上述實驗,此研究證明了HuR蛋白質能透過骨髓間質幹細胞與剔除ELAVL1 的HM20肺癌細胞之間的細胞通道傳遞,並可能更進一步的調節下游癌症幹細胞的相關基因。
Recent studies indicate that cancer stem cells (CSCs), a small population of cancer cells, contribute to tumor progression and metastasis. A potential factor of stem cell-like properties might be cross-talk between mesenchymal stem cells (MSCs) and cancer cells. Research has suggested that the recruitment of MSCs to cancer cells may regulate tumor metastasis through several signal pathways. Also, tunneling nanotubes (TNTs) are implicated in the transfer of mitochondria and miRNA between normal cells and cancer cells subsequently metastasis. However, it remains unknown whether the TNTs formation between -MSCs and lung cancer cells can modulate the CSC properties. In this study, MSCs were isolated from human bone marrow of volunteers, and co-cultured with ELAVL1-knockout (by CRISPR/Cas9-mediated genome editing) HM20 lung cancer cells to investigate whether TNTs could form and ELAVL1 (HuR, a CSC-related protein) was transferred from MSCs to HuR-knockout HM20 cells and upregulated the CSCs properties through TNTs. First, the formation of TNTs and HuR transfer were observed after 24 hours after co-culture. Next, HuR-knockout HM20 cells were treated with Latrunculin A (a TNT inhibitor) to inhibit the formation of TNTs to examine the effects of TNTs. After co-culture, HuR-knockout HM20 cells were sorted with a flow cytometry cell sorter to compare the impact of different amount of TNTs on the CSCs phenotype. Through RT-PCR, we found that the CSC properties were enhanced in HuR-knockout HM20 cells after co-culture compared to HuR-knockout HM20 cells only, whereas the effects were reduced in TNTi-treated cells. In summary, we illustrated that MSCs and HuR-knockout HM20 cells are connected by TNTs after 24hr co-culture. Consequently HuR is transferred from MSCs to HuR-knockout HM20 cells and is likely to control downstream genes related to CSCs.
Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences, 100(7), 3983-3988.
Andresen, V., Wang, X., Ghimire, S., Omsland, M., Gjertsen, B., & Gerdes, H. (2013). Tunneling nanotube (TNT) formation is independent of p53 expression. Cell Death and Differentiation, 20(8), 1124.
Barrangou, R. (2015). The roles of CRISPR–Cas systems in adaptive immunity and beyond. Current Opinion in Immunology, 32, 36-41.
Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3(7), 730.
Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., et al. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122(6), 947-956.
Bukoreshtliev, N. V., Wang, X., Hodneland, E., Gurke, S., Barroso, J. F., & Gerdes, H.-H. (2009). Selective block of tunneling nanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells. FEBS Letters, 583(9), 1481-1488.
Campos, A. R., And, D. G., & White, K. (1985). Mutant alleles at the locus elav in Drosophila melanogaster lead to nervous system defects. A developmental-genetic analysis. Journal of Neurogenetics, 2(3), 197-218.
Chang, Y.-W., Su, Y.-J., Hsiao, M., Wei, K.-C., Lin, W.-H., Liang, C.-J., et al. (2015). Diverse targets of β-catenin during the epithelial–mesenchymal transition define cancer stem cells and predict disease relapse. Cancer Research, 75(16), 3398-3410.
Chen, W.-J., Ho, C.-C., Chang, Y.-L., Chen, H.-Y., Lin, C.-A., Ling, T.-Y., et al. (2014). Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nature Communications, 5, 3472.
Chiou, S.-H., Wang, M.-L., Chou, Y.-T., Chen, C.-J., Hong, C.-F., Hsieh, W.-J., et al. (2010). Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell–like properties and epithelial–mesenchymal transdifferentiation. Cancer Research, 70(24), 10433-10444.
Chou, S.-D., Murshid, A., Eguchi, T., Gong, J., & Calderwood, S. K. (2015). HSF1 regulation of β-catenin in mammary cancer cells through control of HuR/elavL1 expression. Oncogene, 34(17), 2178.
Connor, Y., Tekleab, S., Nandakumar, S., Walls, C., Tekleab, Y., Husain, A., et al. (2015). Physical nanoscale conduit-mediated communication between tumour cells and the endothelium modulates endothelial phenotype. Nature Communications, 6, 8671.
Danilin, S., Sourbier, C., Thomas, L., Lindner, V., Rothhut, S., Dormoy, V., et al. (2010). Role of the RNA-binding protein HuR in human renal cell carcinoma. Carcinogenesis, 31(6), 1018-1026.
Davis, D. M., & Sowinski, S. (2008). Membrane nanotubes: dynamic long-distance connections between animal cells. Nature reviews Molecular Cell Biology, 9(6), 431.
De Falco, V., Guarino, V., Avilla, E., Castellone, M. D., Salerno, P., Salvatore, G., et al. (2007). Biological role and potential therapeutic targeting of the chemokine receptor CXCR4 in undifferentiated thyroid cancer. Cancer Research, 67(24), 11821-11829.
Denkert, C., Koch, I., von Keyserlingk, N., Noske, A., Niesporek, S., Dietel, M., et al. (2006). Expression of the ELAV-like protein HuR in human colon cancer: association with tumor stage and cyclooxygenase-2. Modern Pathology, 19(9), 1261.
Doller, A., Schulz, S., Pfeilschifter, J., & Eberhardt, W. (2013). RNA-dependent association with myosin IIA promotes F-actin-guided trafficking of the ELAV-like protein HuR to polysomes. Nucleic Acids Research, 41(19), 9152-9167.
Fujii, H., Honoki, K., Tsujiuchi, T., Kido, A., Yoshitani, K., & Takakura, Y. (2009). Sphere-forming stem-like cell populations with drug resistance in human sarcoma cell lines. International Journal of Oncology, 34(5), 1381-1386.
Garneau, J. E., Dupuis, M.-È., Villion, M., Romero, D. A., Barrangou, R., Boyaval, P., et al. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468(7320), 67.
Gerdes, H.-H., Bukoreshtliev, N. V., & Barroso, J. F. (2007). Tunneling nanotubes: a new route for the exchange of components between animal cells. FEBS Letters, 581(11), 2194-2201.
Gettinger, S., Horn, L., Jackman, D., Spigel, D., Antonia, S., Hellmann, M., et al. (2018). Five-year follow-up of nivolumab in previously treated advanced non–small-cell lung cancer: results from the CA209-003 study. Journal of Clinical Oncology, 36(17), 1675-1684.
Glorian, V., Maillot, G., Polès, S., Iacovoni, J., Favre, G., & Vagner, S. (2011). HuR-dependent loading of miRNA RISC to the mRNA encoding the Ras-related small GTPase RhoB controls its translation during UV-induced apoptosis. Cell Death and Differentiation, 18(11), 1692.
Gousset, K., Marzo, L., Commere, P.-H., & Zurzolo, C. (2013). Myo10 is a key regulator of TNT formation in neuronal cells. J Cell Sci, 126(19), 4424-4435.
Gupta, P. B., Fillmore, C. M., Jiang, G., Shapira, S. D., Tao, K., Kuperwasser, C., et al. (2011). Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell, 146(4), 633-644.
Gurke, S., Barroso, J. F., & Gerdes, H.-H. (2008). The art of cellular communication: tunneling nanotubes bridge the divide. Histochemistry and Cell Biology, 129(5), 539-550.
Hase, K., Kimura, S., Takatsu, H., Ohmae, M., Kawano, S., Kitamura, H., et al. (2009). M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex. Nature Cell Biology, 11(12), 1427.
Hirschmann-Jax, C., Foster, A. E., Wulf, G. G., Nuchtern, J. G., Jax, T. W., Gobel, U., et al. (2004). A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proceedings of the National Academy of Sciences, 101(39), 14228-14233.
Ho, M. M., Ng, A. V., Lam, S., & Hung, J. Y. (2007). Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Research, 67(10), 4827-4833.
Hu, Y., Yan, C., Mu, L., Huang, K., Li, X., Tao, D., et al. (2015). Fibroblast-derived exosomes contribute to chemoresistance through priming cancer stem cells in colorectal cancer. PloS One, 10(5), e0125625.
Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169(12), 5429-5433.
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816-821.
Karnoub, A. E., Dash, A. B., Vo, A. P., Sullivan, A., Brooks, M. W., Bell, G. W., et al. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449(7162), 557.
Kim, C. F. B., Jackson, E. L., Woolfenden, A. E., Lawrence, S., Babar, I., Vogel, S., et al. (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell, 121(6), 823-835.
Kim, G. Y., Lim, S.-J., & Kim, Y. W. (2011). Expression of HuR, COX-2, and survivin in lung cancers; cytoplasmic HuR stabilizes cyclooxygenase-2 in squamous cell carcinomas. Modern Pathology, 24(10), 1336.
Kim, H. H., Kuwano, Y., Srikantan, S., Lee, E. K., Martindale, J. L., & Gorospe, M. (2009). HuR recruits let-7/RISC to repress c-Myc expression. Genes & Development, 23(15), 1743-1748.
Lim, S.-J., Kim, H. J., Kim, J. Y., Park, K., & Lee, C.-M. (2007). Expression of HuR is associated with increased cyclooxygenase-2 expression in uterine cervical carcinoma. International Journal of Gynecological Pathology, 26(3), 229-234.
Lou, E., Fujisawa, S., Morozov, A., Barlas, A., Romin, Y., Dogan, Y., et al. (2012). Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma. PloS One, 7(3), e33093.
Lu, J., Zheng, X., Li, F., Yu, Y., Chen, Z., Liu, Z., et al. (2017). Tunneling nanotubes promote intercellular mitochondria transfer followed by increased invasiveness in bladder cancer cells. Oncotarget, 8(9), 15539.
Ma, H.-I., Chiou, S.-H., Hueng, D.-Y., Tai, L.-K., Huang, P.-I., Kao, C.-L., et al. (2011). Celecoxib and radioresistant glioblastoma-derived CD133+ cells: improvement in radiotherapeutic effects. Journal of Neurosurgery, 114(3), 651-662.
Mojtahedifard, N., Larki, P., Panahi, J., Moghadam, M. H., & Karizi, S. Z. (2018). Study of SOX2, OCT4 and NANOG Genes Expression in Peripheral Blood of Patients with Non-small Cell Lung Cancer (NSCLC). Journal of Research in Medical and Dental Science, 6(1), 295-300.
Nakanishi, Y., Kamijo, R., Takizawa, K., Hatori, M., & Nagumo, M. (2001). Inhibitors of cyclooxygenase-2 (COX-2) suppressed the proliferation and differentiation of human leukaemia cell lines. European Journal of Cancer, 37(12), 1570-1578.
Noh, K. H., Kim, B. W., Song, K.-H., Cho, H., Lee, Y.-H., Kim, J. H., et al. (2012). Nanog signaling in cancer promotes stem-like phenotype and immune evasion. The Journal of Clinical Investigation, 122(11), 4077-4093.
Önfelt, B., Nedvetzki, S., Benninger, R. K., Purbhoo, M. A., Sowinski, S., Hume, A. N., et al. (2006). Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. The Journal of Immunology, 177(12), 8476-8483.
Ono, M., Kosaka, N., Tominaga, N., Yoshioka, Y., Takeshita, F., Takahashi, R.-u., et al. (2014). Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci. Signal., 7(332), ra63-ra63.
Osteikoetxea-Molnár, A., Szabó-Meleg, E., Tóth, E. A., Oszvald, Á., Izsépi, E., Kremlitzka, M., et al. (2016). The growth determinants and transport properties of tunneling nanotube networks between B lymphocytes. Cellular and Molecular Life Sciences, 73(23), 4531-4545.
Pardal, R., Clarke, M. F., & Morrison, S. J. (2003). Applying the principles of stem-cell biology to cancer. Nature Reviews Cancer, 3(12), 895.
Pasquier, J., Guerrouahen, B. S., Al Thawadi, H., Ghiabi, P., Maleki, M., Abu-Kaoud, N., et al. (2013). Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance. Journal of Translational Medicine, 11(1), 94.
Petersen, I., & Petersen, S. (2001). Towards a genetic-based classification of human lung cancer. Analytical Cellular Pathology, 22(3), 111-121.
Robinow, S., Campos, A. R., Yao, K.-M., & White, K. (1988). The elav gene product of Drosophila, required in neurons, has three RNP consensus motifs. Science, 242(4885), 1570-1572.
Rustom, A., Saffrich, R., Markovic, I., Walther, P., & Gerdes, H.-H. (2004). Nanotubular highways for intercellular organelle transport. Science, 303(5660), 1007-1010.
Schiller, C., Diakopoulos, K. N., Rohwedder, I., Kremmer, E., von Toerne, C., Ueffing, M., et al. (2013). LST1 promotes the assembly of a molecular machinery responsible for tunneling nanotube formation. J Cell Sci, 126(3), 767-777.
Singh, S. K., Clarke, I. D., Terasaki, M., Bonn, V. E., Hawkins, C., Squire, J., et al. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Research, 63(18), 5821-5828.
Sowinski, S., Jolly, C., Berninghausen, O., Purbhoo, M. A., Chauveau, A., Köhler, K., et al. (2008). Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nature Cell Biology, 10(2), 211.
Studeny, M., Marini, F. C., Champlin, R. E., Zompetta, C., Fidler, I. J., & Andreeff, M. (2002). Bone marrow-derived mesenchymal stem cells as vehicles for interferon-β delivery into tumors. Cancer Research, 62(13), 3603-3608.
Tardivel, M., Bégard, S., Bousset, L., Dujardin, S., Coens, A., Melki, R., et al. (2016). Tunneling nanotube (TNT)-mediated neuron-to neuron transfer of pathological Tau protein assemblies. Acta Neuropathologica Communications, 4(1), 117.
Thayanithy, V., Dickson, E. L., Steer, C., Subramanian, S., & Lou, E. (2014). Tumor-stromal cross talk: direct cell-to-cell transfer of oncogenic microRNAs via tunneling nanotubes. Translational Research, 164(5), 359-365.
Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet‐Tieulent, J., & Jemal, A. (2015). Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 65(2), 87-108.
Wang, J., Zhao, W., Guo, Y., Zhang, B., Xie, Q., Xiang, D., et al. (2009). The expression of RNA-binding protein HuR in non-small cell lung cancer correlates with vascular endothelial growth factor-C expression and lymph node metastasis. Oncology, 76(6), 420-429.
Wang, X., Bukoreshtliev, N. V., & Gerdes, H.-H. (2012). Developing neurons form transient nanotubes facilitating electrical coupling and calcium signaling with distant astrocytes. PloS One, 7(10), e47429.
Wang, Z.-G., Liu, S.-L., Tian, Z.-Q., Zhang, Z.-L., Tang, H.-W., & Pang, D.-W. (2012). Myosin-driven intercellular transportation of wheat germ agglutinin mediated by membrane nanotubes between human lung cancer cells. ACS Nano, 6(11), 10033-10041.
Witta, S. E., Gemmill, R. M., Hirsch, F. R., Coldren, C. D., Hedman, K., Ravdel, L., et al. (2006). Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Research, 66(2), 944-950.
Xiang, R., Liao, D., Cheng, T., Zhou, H., Shi, Q., Chuang, T., et al. (2011). Downregulation of transcription factor SOX2 in cancer stem cells suppresses growth and metastasis of lung cancer. British Journal of Cancer, 104(9), 1410.
Yoo, P. S., Mulkeen, A. L., & Cha, C. H. (2006). Post-transcriptional regulation of vascular endothelial growth factor: implications for tumor angiogenesis. World Journal of Gastroenterology: WJG, 12(31), 4937.
Zhang, Y., Yang, L., Ling, C., & Heng, W. (2018). HuR facilitates cancer stemness of lung cancer cells via regulating miR-873/CDK3 and miR-125a-3p/CDK3 axis. Biotechnology Letters, 40(4), 623-631.