簡易檢索 / 詳目顯示

研究生: 李正綱
Lee, Cheng-Kang
論文名稱: 頻域光學同調斷層掃瞄與虛偵測器雷射掃瞄式光學解析度光聲顯微術之系統整合
System Integration of Spectral Domain Optical Coherence Tomography with Virtual Detector Laser-scanning Optical Resolution Photoacoustic Microscopy
指導教授: 李夢麟
Li, Meng Lin
口試委員: 林彥穎
吳順吉
蔡孟燦
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 66
中文關鍵詞: 光學同調斷層掃瞄光學解析度光聲顯微術系統整合光學同調斷層掃瞄
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此碩論中,我們建立了結合兩種互補成像模態的顯微影像技術,使用光譜域頻光學同調斷層掃描和虛擬偵測器光學解析度光聲顯微鏡實現顯微影像。所建立的顯微影像系統將能夠同時提供用於生物組織中的光學散射和光學吸收的體積顯微成像。在我們的系統中,光聲顯微鏡及光學同調斷層掃瞄共享光學掃描和傳送機制。此外,兩個系統的影像擷取可在單次掃描中同時完成。我們透過對微血管模型和洋蔥進行造影,驗證了這種新技術及顯微造影系統。本研究中的實驗證明了兩種系統的組合將如何提供對比的形態學信息。這將會是同時進行功能性和形態信息檢測的極具潛力的方法。


    In this thesis, we built a novel dual-modal micro imaging system, combining two complementary imaging modalities, spectral domain optical coherence tomography and virtual detector laser scanning optical resolution photo-acoustic microscopy. This integration will be able to provide simultaneous volumetric microscopic imaging with optical scattering and optical contrast in biological tissue. In this integrated system, the optical scanning and delivery mechanism is shared between the two different imaging modalities. Furthermore, the image acquisition of the two systems in this thesis are done simultaneously in a single scan. A demonstration of this novel technique was shown through imaging both a microvascular tube phantom and an onion. The experiments in this study demonstrates how the combination of the two systems will provide contrasting morphological information. This would be a potential method for simultaneously detecting functional and morphological information.

    摘要 i Abstract ii List of Figures vi Chapter 1 Introduction 1 1. Photoacoustic Imaging 1 1.1.1 Principles of Photoacoustic Imaging 1 1.1.2 Optical Resolution Photoacoustic Microscopy 3 1.2 Optical Coherence Tomography 5 1.2.1 Principles of Optical Coherence Tomography 5 1.2.2 Michelson’s interferometer 7 1.2.3 Coherence theory 9 1.2.4 Low Coherence Theory 11 1.2.5 Modes of Operation 12 1.2.7 Fourier-Domain Optical Coherence Tomography 13 1.2.8 Spectral-Domain Optical Coherence Tomography 15 1.2.9 Swept source OCT 16 1.2.10 Light Source 16 1.2.11 Beam Focusing 17 1.2.12 Lateral Resolution 18 1.2.13 Axial Resolution 20 1.2.14 Depth of Penetration 21 1.3 Motivation 23 Chapter 2 System Integration 24 2.1 System Architecture 24 2.2.1 Light Source 26 2.2.2 Fiber Coupler 27 2.2.2 Objective Lens 28 2.2.3 Fiber Polarization Controller 29 2.2.4 Homebuilt Spectrometer 30 2.2.5 Spectrometer Adjustment 33 2.2.6 Spectral Resolution 33 2.2.7 Sensitivity Roll-off 34 2.2 System Integration 36 2.2.1 Cage System 37 2.2.2 Data Acquisition Synchronization 39 Chapter 3 Experimental Methods and Results 41 3.1 Experimental Results 41 3.1.1 Spectrum Calibration 41 3.1.2 Spatial Resolution Testing 44 3.1.3 Focal Point Calibration in x-y Plane 47 3.1.4 Depth Accuracy of Optical Coherence Tomography 49 3.1.5 Removal of DC Term in Optical Coherence Tomography 49 3.1.6 Placement of the Reference Arm 50 3.1.7 Axial Direction Focal Plane Mismatch 50 3.1.8 Beam Combiner Losses 52 3.2 Dual Modality Imaging 53 3.2.1 Onion 53 3.2.2 Tube with Ink 55 Chapter 4 Conclusions and Future Work 56 4.1 Conclusions 56 4.2 Future Work 56 References 58

    [1] A. G. Bell, “On the Production and Reproduction of Sound by Light,” American Journal of Science 20, 305-324 (1880).
    [2] Lihong V. Wang, “Tutorial on Photoacoustic Microscopy and Computed Tomography,” IEEE Journal of Selected Topics in Quantum Electronics, 171-179 (2008).
    [3] Paul Beard*, "Biomedical Photoacoustic Imaging," The Royal Society, 602-631 (2011).
    [4] Lihong V. Wang, “Photoacoustic microscopy at super depths,” SPIE, 1117-1118 (2008).
    [5] Lihong V. Wang, “Prospects of photoacoustic tomography,” Med. Phys., 5758-5761 (2008).
    [6] Dan Wu, Lin Huang, Max S. Jiang, and Huabei Jiang, “Contrast Agents for Photoacoustic and Thermoacoustic Imaging: A Review,” Molecular Sciences, 23616-23639 (2014).
    [7] M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Review of Scientific Instruments, 041101-1 – 041101-22 (2006).
    [8] Krista Jansen, Gus Van Soest, and Antonius F. W. Van Der Steen, “Intravascular Photoacoustic Imaging: A New Tool for Vulnerable Plaque Identification,” Medicine & Biology, 1037-1048 (2014).
    [9] Lihong V. Wang, and Junjie Yao, “A Practical Guide to Photoacoustic Tomography in the Life Sciences,” Nat Methods, 627–638 (2016).
    [10] Zhixing Xie, Shuliang Jiao, Hao F. Zhang, and Carmen A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Optics Letters, 1771-1773 (2009).

    [11] James G Fujimoto, Costas Pitris, Stephen A Boppart, and Mark E Brezinski, “Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy,” Neoplasia, 9-25 (2000).
    [12] Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics, 2nd Edition, ISBN: 978-0-471-35832-9 (2007).
    [13] Edward Z. Zhang, Boris Povazay, Jan Laufer, Aneesh Alex, Bernd Hofer, Barbara Pedley, Carl Glittenberg, Bradley Treeby, Ben Cox, Paul Beard, and Wolfgang Drexler “Multimodal Photoacoustic and Optical Coherence Tomography Scanner Using an All Optical Detection Scheme for 3D Morphological Skin Imaging,” Biomed Opt Express, 2202–2215 (2011).
    [14] Shuliang Jiao, Zhixing Xie, Hao F. Zhang, and Carmen A. Puliafito, “Simultaneous Multimodal Imaging with Integrated Photoacoustic Microscopy and Optical Coherence Tomography,” OPTICS LETTERS, 2961-2963 (2009).
    [15] Che-Chang Yang, Meng-Lin Li, “Development of a Virtual-Point-Detector-Concept Based Laser-scanning Optical-resolution Photoacoustic Micro-imaging System,” National Digital Library of Theses and Dissertations in Taiwan, (2016).
    [16] Wolfgang Drexler, Uwe Morgner, Ravi K. Ghanta, Franz X. Kartner, Joel S. Schuman, and James G. Fujimoto, “Ultrahigh-Resolution Ophthalmic Optical Coherence Tomography,” Nature Medicine, 10-15 (2001).
    [17] Maciej Wojtkowski, Vivek J. Srinivasan, Tony H. Ko, James G. Fujimoto, Andrzej Kowalczyk, Jay S. Duker, “Ultrahigh-Resolution, High-Speed, Fourier Domain Optical Coherence Tomography and Methods for Dispersion Compensation,” Optics Express, 2404-2422 (2004).
    [18] Lihong V. Wang, anf Hsin-i Wu, “Biomedical Optics: Principles and Imaging 1st Edition,” Wiley-Interscience, 181-205 (2007).
    [19] A. F. Fercher, W Drexler, C. K. Hitzenberger, and T. Lasser, “Optical Coherence Tomography - Principles and Applications,” IOP Publishing, 239–303 (2003).
    [20] Wolfgang Drexler, Mengyang Liu, Abhishek Kumar, Tschackad Kamali, Angelika Unterhuber, Rainer A. Leitgeb, “Optical Coherence Tomography Today: Speed, Contrast, and Multimodality,” Journal of Biomedical Optics, 071412 (2014).
    [21] R Forte, GL Cennamo, ML Finelli and G de Crecchio, “Comparison of Time Domain Stratus OCT and Spectral Domain SLO/OCT for Assessment of Macular Thickness and Volume,” National Center for Biotechnology Information Search database, 2071–2078 (2009).
    [22] Farzin Forooghian, Catherine Cukras, Catherine B. Meyerle, Emily Y. Chew, and Wai T. Wong, “Evaluation of Time Domain and Spectral Domain Optical Coherence Tomography in the Measurement of Diabetic Macular Edema,” Invest Ophthalmol Vis Sci., 4290–4296 (2008).
    [23] Jina Kim, William Brown, Jason R. Maher, Howard Levinson, and Adam Wax, “Functional Optical Coherence Tomography: Principles and Progress,” Phys Med Biol, (2015).
    [24] David A. Boas , Constantinos Pitris , and Nimmi Ramanujam, “Handbook of Biomedical Optics,” CRC Press, 281–302 (2011).
    [25] James G. Fujimoto, “Optical Coherence Tomography,” C. R. Acad. Sci., 1099–1111 (2001).
    [26] R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier Domain vs. Time Domain Optical Coherence Tomography,” OSI, (2003).
    [27] Yoshiaki Yasuno, Violeta Dimitrova Madjarova, Shuichi Makita , and Nimmi Ramanujam, “Three-Dimensional and High-Speed Swept-Source Optical Coherence Tomography for in Vivo Tnvestigation of Human Snterior Eye Segments,” OSA, (2005).
    [28] Meng-Tsan Tsai, Jeng-Jie Hung, and Ming-Che Chan, “Ultrahigh-Resolution Optical Coherence Tomography with LED-Phosphor-Based Broadband Light Source,” IOP Science, 122502 (2013).
    [29] Chiung-Ting Wu, Meng-Tsan Tsai, and Cheng-Kuang Lee, “Two-Level Optical Coherence Tomography Scheme for Suppressing Spectral Saturation Artifacts,” Sensors, 13548-13555 (2014).
    [30] Tan Liu, Qing Wei, Jing Wang, Shuliang Jiao, and Hao F. Zhang, “Combined Photoacoustic Microscopy and Optical Coherence Tomography Can Measure Metabolic Rate of Oxygen,” OSA, (2011).
    [31] Wei Song, Qing Wei, Tan Liu, David Kuai, Janice M. Burke, Shuliang Jiao, and Hao F. Zhang, “Integrating Photoacoustic Ophthalmoscopy with Scanning Laser Ophthalmoscopy, Optical Coherence Tomography, and Fluorescein Angiography for a Multimodal Retinal Imaging Platform,” Journal of Biomedical Optics, 061206 (2012).
    [32] Xiangyang Zhang, Hao F. Zhang, and Shuliang Jiao, “Optical Coherence Photoacoustic Microscopy: Accomplishing Optical Coherence Tomography and Photoacoustic Microscopy with a Single Light Source,” Journal of Biomedical Optics, 030502 (2012).
    [33] Ji Yi, Qing Wei, Hao F. Zhang, and Vadim Backman, “Structured Interference Optical Coherence Tomography,” Optics Letters, 3048–3050 (2012).
    [34] Cuixia Dai, Xiaojing Liu, Hao F. Zhang, Carmen A. Puliafito, and Shuliang Jiao, “Absolute Retinal Blood Flow Measurement With a DualBeam Doppler Optical Coherence Tomography,” IOVS, 7998–8003 (2013).
    [35] Wenzhong Liu, Tan Liu, Wei Song, Ji Yi, and Hao F. Zhang, “Automatic Retinal Vessel Segmentation Based on Active Contours Method in Doppler Spectral-Domain Optical Coherence Tomography,” Journal of Biomedical Optics, 016002 (2013).
    [36] Wei Song, Qing Wei, Shuliang Jiao, and Hao F. Zhang, “Integrated Photoacoustic Ophthalmoscopy and Spectral-domain Optical Coherence Tomography,” Journal of Visualized Experiments, (2013).
    [37] Ji Yi, Qing Wei, Wenzhong Liu, Vadim Backman, and Hao F. Zhang, “Visible-Light Optical Coherence Tomography for Retinal Oximetry,” Optics Letters, 1796–1798 (2013).
    [38] Ji Yi, Siyu Chen, Vadim Backman, and Hao F. Zhang, “In Vivo Functional Microangiography by Visiblelight Optical Coherence Tomography,” OSA, 3603–3612 (2014).
    [39] Ji Yi, Siyu Chen, Xiao Shu, Amani A. Fawzi, and Hao F. Zhang, “Human retinal Imaging Using Visible-Light Optical Coherence Tomography Guided by Scanning Laser Ophthalmoscopy,” OSA, 3701–3713 (2015).
    [40] Siyu Chen, Ji Yi, Biqin Dong, Cheng Sun, Patrick F. Kiser, Thomas J. Hope, and Hao F. Zhang, “Imaging Endocervical Mucus Anatomy and Dynamics in Macaque Female Reproductive Track Using Optical Coherence Tomography,” Quant Imaging Med Surg, 40-45 (2015).
    [41] Siyu Chen, Ji Yi, and Hao F. Zhang, “Measuring Oxygen Saturation in Retinal and Choroidal Circulations in Rats Using Visible Light Optical Coherence Tomography Angiography,” OSA, 2840–2853 (2015).
    [42] Siyu Chen, Ji Yi, Wenzhong Liu, Vadim Backman, and Hao F. Zhang, “Monte Carlo Investigation of Optical Coherence Tomography Retinal Oximetry,” IEEE Transactions on Biomedical Engineering, 2308–2315 (2015).
    [43] Wenzhong Liu, Hao Li, Ronil S. Shah Xiao Shu, Robert A. Linsenmeier, Amani A. Fawzi, and Hao F. Zhang, “Simultaneous Optical Coherence Tomography Angiography and Fluorescein Angiography in Rodents with Normal Retina and Laser-Induced Choroidal Neovascularization,” Optics Letters, 5782–5785 (2015).
    [44] Ji Yi, Wenzhong Liu, Siyu Chen, Vadim Backman, Nader Sheibani, Christine M. Sorenson, Amani A. Fawzi, Robert A. Linsenmeier, and Hao F. Zhang, “Visible Light Optical Coherence Tomography Measures Retinal Oxygen Metabolic Response to Systemic Oxygenation,” Light: Science & Applications, (2015).
    [45] Siyu Chen, Qi Liu, Xiao Shu, Brian Soetikno, Shanbao Tong, and HAO Hao F. Zhang, “Imaging Hemodynamic Response After Ischemic Dtroke in Mouse Cortex Using Visible-Light Optical Voherence Tomograph,” Biomedical Optics Express, 3377-3390 (2016).
    [46] Lei Xi, Can Duan, Huikai Xie, and Huabei Jiang, “Miniature Probe Combining Optical-Resolution Photoacoustic Microscopy and Optical Voherence Tomography for in Vivo Microcirculation Study,” Applied Optics, 1927-1931 (2013).
    [47] Rongguang Liang, “Biomedical Optical Imaging Technologies”, College of Optical Sciences, University of Arizona, Springer-Verlag Berlin Heidelberg (2013)
    [48] Drexler, W., et al. (2014). Optical coherence tomography today: speed, contrast, and multimodality, SPIE.
    [49] Inc, F. "What is ASE light source ?". from [ https://www.fiberlabs-inc.com/about-ase/.
    [50] (2018). "Thorlabs Inc."

    QR CODE