簡易檢索 / 詳目顯示

研究生: 盧庭宇
Lu, Ting-Yu
論文名稱: 低維度奈米氧化鎵結構之光電性質探討
Optoelectronic Characterization of the Low Dimensional β-Ga2O3 Nanostructures
指導教授: 施漢章
Shih, Han C.
葉均蔚
Yeh, Jien-Wei
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 117
中文關鍵詞: 氧化鎵化學氣相沉積氣-液-固成長機制蒸氣真空電弧
外文關鍵詞: Ga2O3, CVD, VLS, MeVVA
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於單斜晶系的氧化鎵(β-Ga2O3)為具有高耐熱性、良好的化學穩定性和4.9eV的寬能隙,是n型的半導體材料,其在應用於氣體感測器、透明導電薄膜與新世代的光電元件上是很有潛力的材料。本研究為了要增益其光電特性,藉由化學氣相沉積(CVD)的熱蒸鍍法及金屬蒸氣真空電弧(MeVVA)離子佈植,摻雜特定元素於我們合成出來的純氧化鎵奈米線。
    經由CVD的熱蒸鍍法與氣-液-固(VLS)成長機制,我們已經成功合成出高密度且單晶性的氧化鎵奈米線。並且,我們分別改變工作壓力、基材位置及氧氣流量的不同參數,發現均會對奈米線的結構跟性質有很大的影響。
    同樣經由CVD的熱蒸鍍法,我們成功合成出摻雜錫的氧化鎵奈米線並且分析其性質。除此之外,我們測試了在蒸鍍源加入不同比例的錫量對最後摻雜錫濃度的影響。而摻雜錫前後的奈米線性質,在陰極射線激發螢光(CL)分析上,純氧化鎵奈米線原有的415 nm波長peak,在摻雜錫後,藍位移到407 nm波長peak。在電性量測上,摻雜後的電流值,從未摻雜前的10-2提升到10-1微安培,並且電性趨向於導體的歐姆接觸。
    另外,我們利用MeVVA離子佈植把銅摻雜於預先合成的純氧化鎵奈米線。銅的摻雜濃度0.23至1.79 at% ,隨著佈植劑量5×1015至5×1016 atom/cm2增多而增加。隨著越高的銅摻雜濃度,原來純氧化鎵奈米線在CL 光譜中415 nm波長的peak,紅位移到更長的波長位置,在最高銅摻雜濃度(1.79 at%)時,peak位在520 nm上。在電性量測上,摻雜後的電流值,從未摻雜前的10-2大幅提升到10微安培,並且電性趨向於導體的歐姆接觸。


    Monoclinic gallium oxide (β-Ga2O3), due to its high thermal stability, good chemical stability, and a wide band gap of 4.9 eV, is a n-type semiconductor material for application as gas sensors, a transparent conducting oxide material and perhaps the next generation optoelectronic devices. In this work, to enhance its optoelectronic property, the thermal evaporation in a chemical vapor deposition (CVD) process and metal vapor vacuum arc (MeVVA) ion implantation, were applied to dope the specific elements to the Ga2O3 nanowires.
    Tin-doped gallium oxide (Sn-doped Ga2O3) nanostructures were also synthesized by the thermal evaporation in a CVD process and characterized. Different mixing ratio of the Sn dopant was tested to analyze the effect of doping Sn. Cathodoluminescene(CL) showed The pure Ga2O3 nanowires gave an emission 415 nm but showed a blue shift to 407 nm for the emission peak of the Sn-doped Ga2O3 nanowires. In the electrical measurement, after doping, the current increased from 10-2 to 10-1 μA. And the electrical property has a tendency to become an ohmic contact.
    The nanowires were also doped with copper(Cu) by a MeVVA system. The Cu concentration increased from 0.23 at% to 1.79 at% with increasing implant dosages from 5×1015 to 5×1016 atom/cm2. With the higher Cu concentration, we could find that the peak of CL red shifted to the longer wavelength. At the highest Cu concentration(1.79 at%), the emission peak of Cu-doped Ga2O3 nanowires is at 520 nm. In the electrical measurement, after the doping, the current increased sharply from 10-2 to 10 μA and the electrical property has a tendency to be an ohmic contact.

    第一章 序論 1.1 前言 1.2 研究動機與目的 第二章 文獻回顧 2.1奈米科學 2.1-1奈米科技之領域 2.2一維奈米材料的簡介 2.3化學氣相沈積法(Chemical Vapor Deposition, CVD) 2.4一維奈米材料成長機制 2.4-1氣-液-固(Vapor-Liquid-Solid, VLS)成長機制 2.4-2氣-固(Vapor-Solid, VS)成長機制 2.4-3溶液-液-固(Solution-Liquid-Solid, SLS)成長機制 2.4-4氧化物輔助成長(Oxide-assisted growth)機制 2.5氧化鎵的性質與應用 2.6材料的發光原理 2.7摻雜雜質元素的奈米氧化物 2.8離子佈植 第三章 實驗方法與分析儀器介紹 3.1實驗架構 3.1.1純氧化鎵奈米線的合成 3.1.1-1工作壓力對奈米線形貌的影響 3.1.1-2基板位置對成長奈米線的影響 3.1.1-3氧氣流量對線體結構缺陷的影響 3.1.2用蒸鍍法合成摻雜錫的氧化鎵奈米線 3.1.3用離子佈植法摻雜銅於氧化鎵奈米線 3.2分析儀器介紹 3.2-1場發射掃描式電子顯微鏡 3.2-2場發射穿透式電子顯微鏡 3.2-3 X光繞射儀 3.2-4 X光光電子能譜 3.2-5金屬蒸氣真空弧離子佈植 3.2-6陰極射線激發螢光儀 3.2-7半導體參數量測儀 第四章 結果與討論 4.1低維度純氧化鎵奈米結構 4.1.1純氧化鎵奈米線的合成 4.1.1-1表面形貌分析 4.1.1-2顯微結構分析 4.1.1-3成份分析 4.1.1-4性質分析 4.1.1-4.1陰極射線激發螢光光譜分析 4.1.1-4.2 電壓-電流特性量測 4.1.2工作壓力對奈米線形貌的影響 4.1.2-1表面形貌和結構分析 4.1.3基板位置對成長奈米線的影響 4.1.3-1表面形貌和結構分析 4.1.3-2性質分析 4.1.4氧氣流量對線體結構缺陷的影響 4.1.4-1表面形貌和結構分析 4.1.4-2性質分析 4.2用蒸鍍法合成摻雜錫的氧化鎵奈米線 4.2-1表面形貌分析 4.2-2顯微結構分析 4.2-3成份分析 4.2-4性質分析 4.2-4.1陰極射線激發螢光光譜分析 4.2-4.2電壓-電流特性量測 4.2.1加入錫粉量對奈米線的生成與摻雜量之影響 4.2.1-1表面形貌和結構分析 4.2.1-2成份分析 4.3用離子佈植法摻雜銅於氧化鎵奈米線 4.3-1表面形貌分析 4.3-2顯微結構分析 4.3-3成份分析 4.3-4性質分析 4.3-4.1陰極射線激發螢光光譜分析 4.3-4.2電壓-電流特性量測 第五章 結論 第六章 未來展望 第七章 參考文獻

    第一章
    [1] S. Iijima, “Helical microtubules of graphitic carbon”, Nature 354 (1991), pp. 56
    [2] http://en.wikipedia.org/wiki/Potential_well
    [3] http://scienceworld.wolfram.com/physics/Tunneling.html
    [4] P. Avouris, I. W. Lyo and Y. Hasegawa , “Probing electrical transport, electron interference, and quantum size effects at surfaces with STM/STS”, IBM Journal of Research & Development 39 (1995), pp. 603
    [5] H. S. Nalwa, “Handbook of Nanostructured Materials and Nanotechnology”, Academic Press (2000)
    [6] A. S. Edelstein, R. C. Cammarata (eds.), “ Nanomaterials: Synthesis, Properties, and Applications”, Institute of Physics, UK (1996)
    [7] V. M. Shalaev, M. Moskovits (eds.), “ Nanostructured Materials:Clusters, Composites, and Thin Films”, American Chemical Society, Washington, DC (1997)
    [8] http://elearning.stut.edu.tw/m_facture/Nanotech/Web/ch7.htm
    [9] Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani and Y. Li, “O2 and CO sensing of Ga2O3 multiple nanowire gas sensors”, Sens. Actuators B 129 (2008), pp. 666
    [10] C. Lee , R. P. Dwivedi, W. Lee, C. Hong, W. I. Lee and H. W. Kim, “IZO/Al/GZO multilayer films to replace ITO films”, Mater. Sci.- Mater. Electron. 19 (2008), pp. 981
    [11] Y. Tomm, J. M. Ko, A. Yoshikawa and T. Fukuda, “Floating zone growth of beta-Ga2O3: A new window material for optoelectronic device applications”, Sol. Energy Mater. Sol. Cells 66 (2001), pp. 369
    [12] C. H. Liang, G. W. Meng, G. Z. Wang, Y. W. Wang, L. D. Zhang and S. Y. Zhang, “Catalytic synthesis and photoluminescence of β-Ga2O3 nanowires”, Appl. Phys. Lett. 78 (2001), pp. 3202
    [13] T. Harwig and J. Schoonman, “electrical properties of β-Ga2O3 single crystals”, J. Am. Chem. Soc. 23 (1978), pp. 205
    [14] L. Binet and D. Gourier,”Origin of the blue luminescence of β-Ga2O3”, J. Phys. Chem. Solids 59 (1998), pp. 1241
    [15] C. H. Hsieh, L. J. Chou, G. R. Lin, Y. Bando and D. Golberg, “Nanophotonic Switch: Gold-in-Ga2O3 Peapod Nanowires”, Nano Lett. 8 (2008), pp. 3081
    [16] P. Feng, X.Y. Xue, Y.G. Liu, Q. Wan and T.H. Wang,” Achieving fast oxygen response in individual β-Ga2O3 nanowires by ultraviolet illumination”, Appl. Phys. Lett. 89 (2006), pp. 112
    [17] S. I. Maximenko, L. Mazeina, Y. N. Picard, J. A. Freitas, Jr., V. M. Bermudez, and S. M. Prokes,”Cathodoluminescence studies of the inhomogeneities in Sn-doped Ga2O3 nanowires”, Nano Lett. 9 (2009), pp. 3245

    第二章
    [1] http://yes.nctu.edu.tw/Lecture/NewTech/C05/nano/nano.htm
    [2] 小小奈米,讓世界大不同!,數位時代2002年 08月
    [3] H. Masuda and K. Fukuda, “Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina”, Science 268 ( 1995), pp. 1466
    [4] G. Bailey and G. C. Wood, “The Morphology of Anodic Films Formed on Aluminum in Oxalic Acid”, Trans. Inst. Metal. Finish. 52 (1974), pp. 187
    [5] 洪健龍,材料奈米檢測技術規畫與發展,工業材料雜誌213期
    [6] G. Gundiah, A. Govindaraj and C. N. R. Rao, “Nanowires, nanobelts and related nanostructures of Ga2O3”, Phys. Lett. 351 (2002), pp.189
    [7] Y. D. Kim, W. Choi, H. Wakimoto, S. Usami, H. Tomokage and T. Ando, “Direct observation of electron emission site on
    boron-doped polycrystalline diamond thin films using an
    ultra-high-vacuum scanning tunneling microscope “, Appl. Phys. Lett. 75 (1999), pp. 3129
    [8] D. Banerjee, S. H. Jo, Z. F. Ren, “Enhanced field emission of ZnO
    Nanowires”, Adv. Mater. 16 (2004), pp. 2028
    [9] Z. Pan, H.L. Lai, F. C. K. Au, X Duan, W. Zhou, W. Shi, N. Wang, C. S. Lee, N. B. Wong, S. T. Lee, and S. Xie, “ Oriented silicon carbide nanowires: Synthesis and field emission properties”,
    Adv.Mater. 12 (2000), pp. 1186
    [10] Q. Wan and T. H. Wang, “Single-crystalline Sb-doped SnO2
    nanowires: synthesis and gas sensor application”, Chem. Commun. 30 (2005), pp. 3841
    [11] J. X.Wang, X. W. Sun, H. Huang, et al.,”A two-step hydrothermally grown ZnO microtube array for CO gas sensing”
    Appl. Phys.A 88 (2007), pp. 611
    [12] X. J. Huang and Y. K. Choi , “Chemical sensors based on
    Nanostructure Materials”, Sens. Actuators B: Chem. 122 (2007)
    pp. 659
    [13] http://www.mtmi.vu.lt/pfk/funkc_dariniai/nanostructures/superlattice.htm
    [14] 莊達人,VLSI製造技術,第六、九章,高立圖書有限公司(2000)
    [15] R.S. Wagner and W.C. Ellis, “Vapor–liquid–solid mechanism of single crystal growth”, Appl. Phys. Lett. 4 (1964), pp. 89
    [16] E. I. Givargizov , “Fundamental aspects of VLS growth”, J.Crys.Growth 31 (1975), pp. 20
    [17] A.M. Morales and M.L. Charles, “A laser ablation method for the synthesis of crystalline semiconductor nanowires”, Science 279 (1998), pp. 208
    [18] C. W. Zhou, et al., “Controlled growth of gallium nitride single-crystal nanowires using a chemical vapor deposition method”, J. Mater. Res. 18 (2003), pp. 245
    [19] Z. F. Ren et al., “Field-emission studies on thin films of zinc oxide nanowires”, Appl.Phys.Lett. 83 (2003), pp. 4821
    [20] Y. Wu and P. Yang ,”Direct observation of vapor-liquid-solid nanowires growth”, J.Am.Chem.Soc. 123 (2001), pp. 3165
    [21] P. Yang and C. M. Lieber ,” Nanostructured high-temperature superconductors: Creation of strong-pinning columnar defects in nanorod/superconductor composites”, J.Mater.Res. 12 (1997), pp. 2981
    [22] L. X. Zhao, G. W. Meng, X. S. Peng, X. Y. Zhang, L. D. Zhang ,” Large-scale synthesis of GaN nanorods and their photoluminescence”, Appl.Phys.A 74 (2002), pp. 587
    [23] H. Z. Zhang et al., ” Ga2O3 nanowires prepared by physical evaporation”, Solid State Commun. 109 (1999), pp. 677
    [24] T. J. Trentler et al.,” Solution-liquid-solid growth of crystalline III-V semiconductors- an analogy to vapor-liquid-solid growth”, Science 270 (1995), pp. 1791
    [25] Y. Xia, P. Yang, Y. Sun., Y. Wu, B. Mayers, B. Gate, Y.Yin, F. Kim, and H. Yan,” One-dimensional nanostructures: synthesis, characterization, and applications”, Adv.Mater. 15 (2003), pp. 353
    [26] R. Q. Zhang, Y. Lifshitz, and S. T. Lee, “Oxide-assisted growth of semiconducting nanowires”, Adv. Mater. 15 (2003), pp. 635
    [27] C. H. Liang et al., “Catalytic synthesis and photoluminescence of beta-Ga2O3 nanowires”Appl. Phys. Lett. 78 (2001), pp. 3202
    [28] J. Åhman, G. Svensson, and J. Albertsson, “A reinvestigation of beta-gallium oxide”, Acta Cryst. C52 (1996), pp. 1336
    [29] M. Zinkevich and F. Aldinger, “Thermodynamic assessment of the gallium-oxygen system”, J. Am. Ceram. Soc. 87 (2004), pp. 683
    [30] H. Z. Zhang et al., “Ga2O3 nanowires prepared by physical evaporation”, Solid State Commun. 109 (1999), pp. 677
    [31] W. Q. Han et al.,” Growth and microstructure of Ga2O3 nanorods
    “, Solid State Commun. 115 (2000), pp. 527
    [32] J. Zhang and L. Zhang, “Graphite/hydrogen reduction route to Ga2O3 nanobelts”, Solid State Commun. 122 (2002), pp. 493
    [33] G. Gundiah, A. Govindarj and ,C. N. R. Rao, “Nanowires, nanobelts and related nanostructures of Ga2O3“, Chem. Phys.
    Lett. 351 (2002), pp. 189
    [34] J. Y. Li et al., “Synthesis of beta-Ga2O3 nanorods”, J. Alloys Compd. 306 (2000), pp.300
    [35] C. H. Liang et al., “Catalytic synthesis and photoluminescence of beta-Ga2O3 nanowires”, Appl.Phys.Lett. 78 (2001), pp. 3202
    [36] X. Xiang et al.,” A simple method to synthesize gallium oxide nanosheets and nanobelts”, Chem. Phys. Lett. 378 (2003), pp. 660
    [37] J. Zhang et al. ,” Fabrication, structural characterization and optical properties of semiconducting gallium oxide nanobelts”,
    Phys.Lett. A 322 (2004), pp. 363
    [38] Z. Wei, Z. R. Dai, and Z. L. Wang, ” Nanobelts of semiconducting oxides”, Science 291 (2001), pp. 1947
    [39] J. Li et al., “Large-scale synthesis of single-crystalline β-Ga2O3 nanoribbons, nanosheets and nanowires”, J.Phys.Condens.Mater 13 (2001), pp. 937
    [40] Z. R. Dai, Z. W. Pan, and Z. L. Wang, ” Tin oxide nanowires, nanoribbons, and nanotubes”, J.Phys.Chem.B 106 (2002), pp. 902
    [41] H. P. Ho et al., ” Synthesis of beta gallium oxide nano-ribbons from gallium arsenide by plasma immersion ion implantation and rapid thermal annealing”, Chem. Phys. Lett. 382 (2003), pp. 573
    [42] S. Sharma and M. K. Sunkara,” Direct synthesis of gallium oxide tubes, nanowires, and nanopaintbrushes”, J.Am.Chem.Soc. 124 (2002), pp. 12288
    [43] 陳彥志,氧化鎵奈米線及氧化銦顆粒成長及分析,國立成功大學材料科學及工程學系碩士論文(2004)
    [44] D. R. Vij and N. Singh, “Luminescence and related properties of II-IV semiconductors”, Nova Science, Commack, NY, (1998)
    [45] H. Kim and C. M. Gilmore, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices”, J. Appl. Phys. 86 (1999), pp. 6451
    [46] X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices”, Appl. Phys. Lett. 83 (2003) pp. 9
    [47] P. K. Song, M. W. Atanabe, M. Kon, A. Mitsui and Y. Shigesato, “Electrical and optical properties of gallium-doped zinc oxide films deposited by dc magnetron sputtering”, Thin Solid Films 411 (2002), pp. 82
    [48] K. S. Kim, S. Y. Yoon, W. J. Lee and K. H. Kim, “Surface morphologies and electrical properties of antimony-doped tin oxide films deposited by plasma-enhanced chemical vapor deposition “, Surf. Coat. Technol. 138 (2001), pp. 229
    [49] M. Ogita, N. Saika, Y. Nakanishi, and Y. Hatanaka, “Ga2O3 Thin Films for High-Temperature Gas Sensors”, Appl Surf. Sci. 142 (1999), pp. 188
    [50] J. Frank, M. Fleischer, H. Meixner, and A. Feltz, “Enhancement of sensitivity and conductivity of semiconducting Ga2O3 gas sensors by doping with SnO2”, Sens. Actuator B- Chem. 49 (1998), pp.110 
    [51] A. Nag, and A. Shireen, “Search for new transparent conductors: Effect of Ge doping on the conductivity of Ga2O3, In2O3 and Ga1.4In0.6O3 ”, Solid State Commun. (2010)
    [52] C.C. Chen, and C.C. Chen, “Morphology and electrical properties of pure and Ti-doped gas-sensitive Ga2O3 film prepared by rheotaxial growth and thermal oxidation”, J. Mater. Res. 19 (2004), pp. 1105
    [53] A. E. Rakhshani, Y. Makdisi, and H. A. Ramazaniyan, “Electronic and optical properties of fluorine-doped tin oxide films”, J. Appl. Phys. 83 (1998), pp. 15
    [54] X. Y. Xue, Y. J. Chen, Y. G. Liu, S. L. Shi, Y. G. Wang, and T. H. Wang , “Synthesis and ethanol sensing properties of indium-doped tin oxide nanowires”, Appl. Phys. Lett. 88 (2006), pp. 201907
    [55] P. Nguyen, H. T. Ng, J. Kong, A. M. Cassell, R. Quinn, J. Li, J. Han, M. McNeil, and M. Meyyappan, “Epitaxial Directional Growth of Indium-Doped Tin Oxide Nanowire Arrays”, Nano Lett. 3 (2003), pp. 925
    [56] Q. Wan, and T.H. Wang, “Single-crystalline Sb-doped SnO2 nanowires: synthesis and gas sensor application”, Chem. Commun. (2005), pp. 3841
    [57] http://www.2ic.cn/html/58/t-315358.html

    第四章
    [1] H. W. Kim, and S. H. Shim,“Growth of MgO nanowires assisted by the annealing treatment of Au-coated substrates”, Chem. Phys. Lett. 422 (2006) pp.165
    [2] X. C. Wu, Y. R. Tao, Z. J. Han, and B. D. Zhang, “Synthesis and characterization of MgAl2O4 spinel nanowires”, J. Mater. Chem. 13 (2003), pp. 2649
    [3] K. H. Jackson, “in Liquid Metals and Solidification”, ASM, Cleveland (1958), pp. 174
    [4] R. Carli, and C.L. Bianchi, “XPS analysis of gallium oxides”, App. Surf. Sci. 74 (1994), pp. 99
    [5] T. Harwig and F. Kellendonk, “Some observations on the photoluminescence of doped beta-galliumsesquioxide”, J. Solid State Chem. 255 (1978), pp. 24
    [6] Y. P. Song, H. Z. Zhang, C. Lin, Y. W. Zhu, G. H. Li, F. H. Yang, and D. P. Yu,” Luminescence emission originating from nitrogen doping of β-Ga2O3 nanowires”, Phys. Rev. Lett. 69 (2004), pp. 075304
    [7] V. I. Vasil'tsiv, Y. M. Zakharko, and Y. I. Prim, Ukr. Fiz. Zh. 33 (1988), pp. 1320
    [8] 薛智仁,氮化鎵半導體量子點及氧化鎵奈米線之成長及分析,國立成功大學材料科學與工程學系碩士論文(2004)
    [9] E. Burstein, “Anomalous Optical Absorption Limit in InSb”, Phys. Rev. 93 (1954), pp. 632
    [10] T. S. Moss, “The Interpretation of the Properties of Indium Antimonide”, Proc. Phys. Soc. B 67 (1954), pp.775
    [11] X. Y. Xue, Y. J. Chen, Y. G. Liu, S. L. Shi, Y. G. Wang, and T. H. Wang , “Synthesis and ethanol sensing properties of indium-doped tin oxide nanowires”, Appl. Phys. Lett. 88 (2006), pp. 201907
    [12] Ya. I. Alivov, M. V. Chukichev, and V. A. Nikitenko,” Green luminescence band of zinc oxide films copper-doped by thermal diffusion”, Semiconductors 38 (2004), pp. 34
    [13] A. Cetin, R. Kibar, M. Ayvacıkl, N. Can, C. Buchal, P. D. Townsend , A. L. Stepanov, T. Karali, and S. Selvi, “Optical properties of Cu implanted ZnO”, Nucl. Instrum. Methods Phys. Res., Sect. B 249 (2009), pp. 474

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE