研究生: |
高聖淵 KAO, SHENG-YUAN |
---|---|
論文名稱: |
果蠅光髓質內局部神經元的動態調諧神經模型 A neural circuit model of dynamic tuning by M6 local neurons in the drosophila visual system |
指導教授: |
羅中泉
Lo, Chung-Chuan |
口試委員: |
焦傳金
林彥穎 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 系統神經科學研究所 Institute of Systems Neuroscience |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 39 |
中文關鍵詞: | 果蠅光髓質 、局部神經元 |
外文關鍵詞: | optic medulla, Flysim |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
日常中光源的差異性其實是很大的,較高階的動物具有瞳孔及水晶體能調節光源進入的量,再經由光受器(photoreceptor)後端的神經及腦區調節使生物在視覺下不會因光源差異而失真。希望了解生物是如何調節光源以確保影像不因光源差異而失真,而使用果蠅為研究對象,果蠅視覺因沒有瞳孔調節入射光,是光線直接進入光受器傳到光髓質(Optic Medulla/Med)後再傳至下游腦區,且果蠅光源視覺的處理方式僅是由位於 Med 內的局部神經元(Local neuron/LN)調節。由之前的研究發現位於 Med 中的 LN 有大小上的差異,且皆為抑制型神經元。因此我們設
計多種覆蓋範圍的 LN,希望找到這些型態上差異的功能。
而此篇實驗的結果是發現型態與外在刺激的關連性及覆蓋範圍的大小具有調
控上功能,能將高刺激區塊調節與低刺激區塊相近且能將於高刺激區塊中的細節明顯。功能類似相機系統中的高動態範圍成像(HDR)技術
Animals are able to perceive detailed visual features in natural scene, which often
exhibits high contrast ratio across the field of view. Although being a fundamental
feature of the visual system, the circuit mechanism of the high dynamic range is not
well understood. To address the problem, we developed a computational model of the
local neuron (M6LN) circuit in the sixth layers of the medulla, a neuropil in the early
visual area. A recent study revealed that the M6LNs have diverse coverage patterns in
the medulla and suggested that M6LNs may take part in tuning the dynamic range of the
visual system.
1
We systematically investigated the correlation between the coverage
patterns of M6LNs and ability of dynamic range tuning. We tested our model with
images of natural scene and found that the combination of N6LNs with specific
coverage patterns led to the optimal results. Under this circuit configuration, the visual
system is able to process images with high contrast ratio in a way similar to the
high-dynamic rang (HDR) technique used in modern cameras.
1. Chin, A.-L., Lin, C.-Y., Fu, T.-F., Dickson, B. J., & Chiang, A.-S. (2014). Diversity
and wiring variability of visual local neurons in the Drosophila medulla M6
stratum: Diversity and Variability in M6 Local Neurons. Journal of Comparative
Neurology, 522(17), 3795–3816. https://doi.org/10.1002/cne.23622
2. Williams, N. (2005). All phaged out. Current Biology, 15(9), R318–R319.
3. Fisher, Y. E., Leong, J. C. S., Sporar, K., Ketkar, M. D., Gohl, D. M., Clandinin, T.
R., & Silies, M. (2015). A Class of Visual Neurons with Wide-Field Properties Is
Required for Local Motion Detection. Current Biology, 25(24), 3178–3189.
https://doi.org/10.1016/j.cub.2015.11.018
4. Eglen, S. J. (2006). Development of regular cellular spacing in the retina:
theoretical models. Mathematical Medicine and Biology, 23(2), 79–99.
https://doi.org/10.1093/imammb/dql003
5. Rockhill, R. L., Euler, T., & Masland, R. H. (2000). Spatial order within but not
between types of retinal neurons. Proceedings of the National Academy of Sciences,
97(5), 2303–2307.
6. Wassle, H., & Riemann, H. J. (1978). The mosaic of nerve cells in the mammalian
retina. Proceedings of the Royal Society of London B: Biological Sciences,
200(1141), 441–461.
7. Bahl, A., Ammer, G., Schilling, T., & Borst, A. (2013). Object tracking in
motion-blind flies. Nature Neuroscience, 16(6), 730–738.
https://doi.org/10.1038/nn.3386
8. Maisak, M. S., Haag, J., Ammer, G., Serbe, E., Meier, M., Leonhardt, A., … Borst,
A. (2013). A directional tuning map of Drosophila elementary motion detectors.
Nature, 500(7461), 212–216. https://doi.org/10.1038/nature12320
9. Katsov, A. Y., & Clandinin, T. R. (2008). Motion Processing Streams in
Drosophila Are Behaviorally Specialized. Neuron, 59(2), 322–335.
https://doi.org/10.1016/j.neuron.2008.05.022
10. Rister, J., Pauls, D., Schnell, B., Ting, C.-Y., Lee, C.-H., Sinakevitch, I., …
Heisenberg, M. (2007). Dissection of the Peripheral Motion Channel in the Visual
System of Drosophila melanogaster. Neuron, 56(1), 155–170.
https://doi.org/10.1016/j.neuron.2007.09.014
11. Vogt, N., & Desplan, C. (2007). The First Steps in Drosophila Motion Detection.
Neuron, 56(1), 5–7. https://doi.org/10.1016/j.neuron.2007.09.025
12. Zhu, Y., Nern, A., Zipursky, S. L., & Frye, M. A. (2009). Peripheral Visual
Circuits Functionally Segregate Motion and Phototaxis Behaviors in the Fly.
Current Biology, 19(7), 613–619. https://doi.org/10.1016/j.cub.2009.02.053
13. Sanes, J. R., & Zipursky, S. L. (2010). Design Principles of Insect and Vertebrate
Visual Systems. Neuron, 66(1), 15–36.
https://doi.org/10.1016/j.neuron.2010.01.018
14. Viets, K., Eldred, K. C., & Johnston, R. J. (2016). Mechanisms of Photoreceptor
Patterning in Vertebrates and Invertebrates. Trends in Genetics, 32(10), 638–659.
https://doi.org/10.1016/j.tig.2016.07.004
15. Borst, A. (2009). Drosophila’s View on Insect Vision. Current Biology, 19(1),
R36–R47. https://doi.org/10.1016/j.cub.2008.11.001
16. Baden, T., Esposti, F., Nikolaev, A., & Lagnado, L. (2011). Spikes in Retinal
Bipolar Cells Phase-Lock to Visual Stimuli with Millisecond Precision. Current
Biology, 21(22), 1859–1869. https://doi.org/10.1016/j.cub.2011.09.042
17. Connaughton, V. P., Graham, D., & Nelson, R. (2004). Identification and
morphological classification of horizontal, bipolar, and amacrine cells within the
zebrafish retina. The Journal of Comparative Neurology, 477(4), 371–385.
https://doi.org/10.1002/cne.20261
18. DeVries, S. H., Li, W., & Saszik, S. (2006). Parallel Processing in Two
Transmitter Microenvironments at the Cone Photoreceptor Synapse. Neuron, 50(5),
735–748. https://doi.org/10.1016/j.neuron.2006.04.034
19. Morgan, J. L., Soto, F., Wong, R. O. L., & Kerschensteiner, D. (2011).
Development of Cell Type-Specific Connectivity Patterns of Converging
Excitatory Axons in the Retina. Neuron, 71(6), 1014–1021.
https://doi.org/10.1016/j.neuron.2011.08.025
20. Odermatt, B., Nikolaev, A., & Lagnado, L. (2012). Encoding of Luminance and
Contrast by Linear and Nonlinear Synapses in the Retina. Neuron, 73(4), 758–773.
https://doi.org/10.1016/j.neuron.2011.12.023
21. Greg Ward, Anyhere Software. High Dynamic Range Image Encodings.
http://www.anyhere.com/gward/hdrenc/
22. Debevec, P. E., & Malik, J. (2008). Recovering high dynamic range radiance maps
from photographs. In ACM SIGGRAPH 2008 classes (p. 31). ACM. Retrieved
from http://dl.acm.org/citation.cfm?id=1401174
23. Alletto, S., Serra, G., & Cucchiara, R. (2016). Video registration in egocentric
vision under day and night illumination changes. Computer Vision and Image
Understanding. https://doi.org/10.1016/j.cviu.2016.09.010
24. Pichaud, F. (2014). Transcriptional regulation of tissue organization and cell
morphogenesis: The fly retina as a case study. Developmental Biology, 385(2),
168–178. https://doi.org/10.1016/j.ydbio.2013.09.031
25. Sato, M., Suzuki, T., & Nakai, Y. (2013). Waves of differentiation in the fly visual
system. Developmental Biology, 380(1), 1–11.
https://doi.org/10.1016/j.ydbio.2013.04.007
26. Morante, J., & Desplan, C. (2008). The Color-Vision Circuit in the Medulla of
Drosophila. Current Biology, 18(8), 553–565.
https://doi.org/10.1016/j.cub.2008.02.075
27. Fischbach, K.-F., & Dittrich, A. P. M. (1989). The optic lobe of Drosophila
melanogaster. I. A Golgi analysis of wild-type structure. Cell and Tissue Research,
258(3), 441–475.
28. Almut, Kelber., &Miriam, J. Henze. (2013). Colour Vision: Parallel
PathwaysIntersect in Drosophila. Current Biology, 23(23), R1043–R1044.
http://dx.doi.org/10.1016/j.cub.2013.10.025
29. Oppermann, D., Schramme, J., & Neumeyer, C. (2016). Rod-cone based color
vision in seals under photopic conditions. Vision Research, 125, 30–40.
https://doi.org/10.1016/j.visres.2016.04.009
30. Lisabeth, E. M., Falivelli, G., & Pasquale, E. B. (2013). Eph Receptor Signaling
and Ephrins. Cold Spring Harbor Perspectives in Biology, 5(9), a009159–a009159.
https://doi.org/10.1101/cshperspect.a009159
31. Stoeckli, E. T. (2014). Wiring Mechanisms for Olfaction and Vision—Not
Completely Different after All. Neuron, 84(4), 655–657.
https://doi.org/10.1016/j.neuron.2014.11.002