簡易檢索 / 詳目顯示

研究生: 高聖淵
KAO, SHENG-YUAN
論文名稱: 果蠅光髓質內局部神經元的動態調諧神經模型
A neural circuit model of dynamic tuning by M6 local neurons in the drosophila visual system
指導教授: 羅中泉
Lo, Chung-Chuan
口試委員: 焦傳金
林彥穎
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 系統神經科學研究所
Institute of Systems Neuroscience
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 39
中文關鍵詞: 果蠅光髓質局部神經元
外文關鍵詞: optic medulla, Flysim
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 日常中光源的差異性其實是很大的,較高階的動物具有瞳孔及水晶體能調節光源進入的量,再經由光受器(photoreceptor)後端的神經及腦區調節使生物在視覺下不會因光源差異而失真。希望了解生物是如何調節光源以確保影像不因光源差異而失真,而使用果蠅為研究對象,果蠅視覺因沒有瞳孔調節入射光,是光線直接進入光受器傳到光髓質(Optic Medulla/Med)後再傳至下游腦區,且果蠅光源視覺的處理方式僅是由位於 Med 內的局部神經元(Local neuron/LN)調節。由之前的研究發現位於 Med 中的 LN 有大小上的差異,且皆為抑制型神經元。因此我們設
    計多種覆蓋範圍的 LN,希望找到這些型態上差異的功能。
    而此篇實驗的結果是發現型態與外在刺激的關連性及覆蓋範圍的大小具有調
    控上功能,能將高刺激區塊調節與低刺激區塊相近且能將於高刺激區塊中的細節明顯。功能類似相機系統中的高動態範圍成像(HDR)技術


    Animals are able to perceive detailed visual features in natural scene, which often
    exhibits high contrast ratio across the field of view. Although being a fundamental
    feature of the visual system, the circuit mechanism of the high dynamic range is not
    well understood. To address the problem, we developed a computational model of the
    local neuron (M6LN) circuit in the sixth layers of the medulla, a neuropil in the early
    visual area. A recent study revealed that the M6LNs have diverse coverage patterns in
    the medulla and suggested that M6LNs may take part in tuning the dynamic range of the
    visual system.
    1
    We systematically investigated the correlation between the coverage
    patterns of M6LNs and ability of dynamic range tuning. We tested our model with
    images of natural scene and found that the combination of N6LNs with specific
    coverage patterns led to the optimal results. Under this circuit configuration, the visual
    system is able to process images with high contrast ratio in a way similar to the
    high-dynamic rang (HDR) technique used in modern cameras.

    簡介 . 1 工具與方法 . 4 一、 Flysim: . 4 二、 神經網路:. 4 三、 圖像刺激:. 5 四、 工具方程式:. 6 五、 實驗使用程式:. 7 六、 實驗流程 . 8 實驗結果 . 9 討論與結論. 22 附錄 . 24 參考資料 . 34

    1. Chin, A.-L., Lin, C.-Y., Fu, T.-F., Dickson, B. J., & Chiang, A.-S. (2014). Diversity
    and wiring variability of visual local neurons in the Drosophila medulla M6
    stratum: Diversity and Variability in M6 Local Neurons. Journal of Comparative
    Neurology, 522(17), 3795–3816. https://doi.org/10.1002/cne.23622
    2. Williams, N. (2005). All phaged out. Current Biology, 15(9), R318–R319.
    3. Fisher, Y. E., Leong, J. C. S., Sporar, K., Ketkar, M. D., Gohl, D. M., Clandinin, T.
    R., & Silies, M. (2015). A Class of Visual Neurons with Wide-Field Properties Is
    Required for Local Motion Detection. Current Biology, 25(24), 3178–3189.
    https://doi.org/10.1016/j.cub.2015.11.018
    4. Eglen, S. J. (2006). Development of regular cellular spacing in the retina:
    theoretical models. Mathematical Medicine and Biology, 23(2), 79–99.
    https://doi.org/10.1093/imammb/dql003
    5. Rockhill, R. L., Euler, T., & Masland, R. H. (2000). Spatial order within but not
    between types of retinal neurons. Proceedings of the National Academy of Sciences,
    97(5), 2303–2307.
    6. Wassle, H., & Riemann, H. J. (1978). The mosaic of nerve cells in the mammalian
    retina. Proceedings of the Royal Society of London B: Biological Sciences,
    200(1141), 441–461.
    7. Bahl, A., Ammer, G., Schilling, T., & Borst, A. (2013). Object tracking in
    motion-blind flies. Nature Neuroscience, 16(6), 730–738.
    https://doi.org/10.1038/nn.3386
    8. Maisak, M. S., Haag, J., Ammer, G., Serbe, E., Meier, M., Leonhardt, A., … Borst,
    A. (2013). A directional tuning map of Drosophila elementary motion detectors.
    Nature, 500(7461), 212–216. https://doi.org/10.1038/nature12320
    9. Katsov, A. Y., & Clandinin, T. R. (2008). Motion Processing Streams in
    Drosophila Are Behaviorally Specialized. Neuron, 59(2), 322–335.
    https://doi.org/10.1016/j.neuron.2008.05.022
    10. Rister, J., Pauls, D., Schnell, B., Ting, C.-Y., Lee, C.-H., Sinakevitch, I., …
    Heisenberg, M. (2007). Dissection of the Peripheral Motion Channel in the Visual
    System of Drosophila melanogaster. Neuron, 56(1), 155–170.
    https://doi.org/10.1016/j.neuron.2007.09.014
    11. Vogt, N., & Desplan, C. (2007). The First Steps in Drosophila Motion Detection.
    Neuron, 56(1), 5–7. https://doi.org/10.1016/j.neuron.2007.09.025
    12. Zhu, Y., Nern, A., Zipursky, S. L., & Frye, M. A. (2009). Peripheral Visual
    Circuits Functionally Segregate Motion and Phototaxis Behaviors in the Fly.
    Current Biology, 19(7), 613–619. https://doi.org/10.1016/j.cub.2009.02.053
    13. Sanes, J. R., & Zipursky, S. L. (2010). Design Principles of Insect and Vertebrate
    Visual Systems. Neuron, 66(1), 15–36.
    https://doi.org/10.1016/j.neuron.2010.01.018
    14. Viets, K., Eldred, K. C., & Johnston, R. J. (2016). Mechanisms of Photoreceptor
    Patterning in Vertebrates and Invertebrates. Trends in Genetics, 32(10), 638–659.
    https://doi.org/10.1016/j.tig.2016.07.004
    15. Borst, A. (2009). Drosophila’s View on Insect Vision. Current Biology, 19(1),
    R36–R47. https://doi.org/10.1016/j.cub.2008.11.001
    16. Baden, T., Esposti, F., Nikolaev, A., & Lagnado, L. (2011). Spikes in Retinal
    Bipolar Cells Phase-Lock to Visual Stimuli with Millisecond Precision. Current
    Biology, 21(22), 1859–1869. https://doi.org/10.1016/j.cub.2011.09.042
    17. Connaughton, V. P., Graham, D., & Nelson, R. (2004). Identification and
    morphological classification of horizontal, bipolar, and amacrine cells within the
    zebrafish retina. The Journal of Comparative Neurology, 477(4), 371–385.
    https://doi.org/10.1002/cne.20261
    18. DeVries, S. H., Li, W., & Saszik, S. (2006). Parallel Processing in Two
    Transmitter Microenvironments at the Cone Photoreceptor Synapse. Neuron, 50(5),
    735–748. https://doi.org/10.1016/j.neuron.2006.04.034
    19. Morgan, J. L., Soto, F., Wong, R. O. L., & Kerschensteiner, D. (2011).
    Development of Cell Type-Specific Connectivity Patterns of Converging
    Excitatory Axons in the Retina. Neuron, 71(6), 1014–1021.
    https://doi.org/10.1016/j.neuron.2011.08.025
    20. Odermatt, B., Nikolaev, A., & Lagnado, L. (2012). Encoding of Luminance and
    Contrast by Linear and Nonlinear Synapses in the Retina. Neuron, 73(4), 758–773.
    https://doi.org/10.1016/j.neuron.2011.12.023
    21. Greg Ward, Anyhere Software. High Dynamic Range Image Encodings.
    http://www.anyhere.com/gward/hdrenc/
    22. Debevec, P. E., & Malik, J. (2008). Recovering high dynamic range radiance maps
    from photographs. In ACM SIGGRAPH 2008 classes (p. 31). ACM. Retrieved
    from http://dl.acm.org/citation.cfm?id=1401174
    23. Alletto, S., Serra, G., & Cucchiara, R. (2016). Video registration in egocentric
    vision under day and night illumination changes. Computer Vision and Image
    Understanding. https://doi.org/10.1016/j.cviu.2016.09.010
    24. Pichaud, F. (2014). Transcriptional regulation of tissue organization and cell
    morphogenesis: The fly retina as a case study. Developmental Biology, 385(2),
    168–178. https://doi.org/10.1016/j.ydbio.2013.09.031
    25. Sato, M., Suzuki, T., & Nakai, Y. (2013). Waves of differentiation in the fly visual
    system. Developmental Biology, 380(1), 1–11.
    https://doi.org/10.1016/j.ydbio.2013.04.007
    26. Morante, J., & Desplan, C. (2008). The Color-Vision Circuit in the Medulla of
    Drosophila. Current Biology, 18(8), 553–565.
    https://doi.org/10.1016/j.cub.2008.02.075
    27. Fischbach, K.-F., & Dittrich, A. P. M. (1989). The optic lobe of Drosophila
    melanogaster. I. A Golgi analysis of wild-type structure. Cell and Tissue Research,
    258(3), 441–475.
    28. Almut, Kelber., &Miriam, J. Henze. (2013). Colour Vision: Parallel
    PathwaysIntersect in Drosophila. Current Biology, 23(23), R1043–R1044.
    http://dx.doi.org/10.1016/j.cub.2013.10.025
    29. Oppermann, D., Schramme, J., & Neumeyer, C. (2016). Rod-cone based color
    vision in seals under photopic conditions. Vision Research, 125, 30–40.
    https://doi.org/10.1016/j.visres.2016.04.009
    30. Lisabeth, E. M., Falivelli, G., & Pasquale, E. B. (2013). Eph Receptor Signaling
    and Ephrins. Cold Spring Harbor Perspectives in Biology, 5(9), a009159–a009159.
    https://doi.org/10.1101/cshperspect.a009159
    31. Stoeckli, E. T. (2014). Wiring Mechanisms for Olfaction and Vision—Not
    Completely Different after All. Neuron, 84(4), 655–657.
    https://doi.org/10.1016/j.neuron.2014.11.002

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE