研究生: |
張淑君 Chang, Shu-Jun |
---|---|
論文名稱: |
發展台灣參考人數學假體與應用於計算器官劑量轉換係數 The development and application of Taiwan Reference Man (TRM) and Taiwan Reference Woman (TRW) phantoms for Organ dose calculations |
指導教授: |
江祥輝
Jiang, Shiang-Huei |
口試委員: |
許榮鈞
Sheu, Rong-Jiun 張似瑮 Chang, Szu-Li 林威廷 Lin, Uei-Tyng 張栢菁 Chang, Bor-Jing |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 199 |
中文關鍵詞: | 台灣參考人 、數學假體 、輻射劑量 、蒙地卡羅 、輻射防護 |
外文關鍵詞: | reference man, computational phantom, radiation dose, Monte Carlo, radiation protection |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
參考人假體被廣泛應用於評估體外照射與體內曝露之器官吸收劑量,因國際輻射防護委員會建議的ORNL參考人假體是基於高加索人體型而發展,同時國際原子能總署基於對亞洲各地區國家的組織器官生理解剖與新陳代謝之研究報告,指出亞洲人的器官體積較西歐人小,且亞洲各地區因飲食習慣、生活作息與地理環境之差異,造成器官質量的差異頗大;因此,建議亞洲各地區應建置專屬參考人假體以應用於輻射防護,提升對國人的健康風險防護。
本研究基於這10多年來尚未完整建置台灣參考人假體,故招募40名志願者的體型接近台灣人口統計調查的平均範圍,利用核磁共振成像開發台灣成年男性參考人(TRM)和台灣成年女性參考人(TRW)的數學假體。本研究所開發的TRM假體之身高168.6cm、體重64.3kg;TRW假體之身高156.9cm、體重54.5kg;共建置的器官有15 個器官,分別為腦、眼睛、甲狀腺、肺臟、心臟(壁)、肝臟、胃(壁)、脾臟、膽囊、胰臟、腎臟、膀胱(壁)、卵巢、子宮與睪丸。考量因核磁共振成像對於骨骼的鑑別性不佳,本研究依台灣參考人軀幹體型,以橡樹嶺國家實驗室(ORNL)成人假體為基礎進行等比例縮減;同時因大腸與小腸屬於變形器官,本研究在圈選邊界上有較大誤差,故有關升結腸、橫結腸、降結腸、乙狀結腸與直腸等器官,仍參考ORNL假體進行器官特徵之比例修訂。
利用蒙地卡羅MCNP程式,計算體外光子射束在AP、PA、RLAT、LLAT之照射幾何條件下的劑量轉換係數(Dose conversion coefficients, DCC)。在AP照射幾何條件中,比較TRM和ORNL成人假體之DCC,顯示光子能量0.1 MeV、1 MeV和10 MeV對整體器官的DCC之差異平均值分別為7.3%、5.8%和5.2%;而對於TRW而言,三種能量下與ORNL假體的DCC平均差異值分別為10.6%、7.4%和8.3%。此顯示台灣參考人假體的軀幹大小以及器官質量和幾何位置對DCC具有顯著影響。
對於評估比吸收分率(specific absorbed fraction, SAF),當器官質量差異小於20%時,當源器官與靶器官相同時,TRM、TRW和ORNL成人假體之間的SAF差異小於10%。但比較源器官肝臟對胰腺的平均SAF,則TRM比ORNL成人假體大38%,而TRW的評估結果是ORNL成人假體的2.02倍。對於S值計算,TRW和ORNL成人假體的差異比率範圍為0.91至1.57,TRM和ORNL成人假體的差異比率範圍為1.04至2.29。結論可知SAF和S值結果主要受器官之間的高度、器官質量和幾何關係的影響甚大。
本研究結合國內團隊完整開發台灣參考人TRM與TRW之數學假體,並探討體外劑量轉換係數DCC與體內劑量評估所需之SAF與S值,完成台灣參考人體外劑量轉換係數數據庫與核醫藥物S值數據庫,其能增加本土應用於體外照射曝露與體內核醫藥物曝露之輻射防護準確性與合理性。
Reference phantoms are widely applied to evaluate the radiation dose for external exposure and internal exposure. However, the frequently used reference phantoms, as the recommendation of International Commission on Radiological Protection, are based on Caucasians. Dose estimation for Asians using a Caucasian phantom can result in significant errors. International Atomic Energy Agency also sugguested that the organ size of Asians is smaller than Western Europeans and the differences in organ characteristics are caused by differences in eating habits, lifestyle and geographical environment in various Asian regions. Therefore, it is recommended that all regions in Asia should be developed the proprietary reference phantom for the radiation protection.
This study recruited 40 volunteers whose body sizes are close to the average Taiwanese population. Magnetic resonance imaging was performed to obtain the organ volume for construction of the Taiwanese reference man (TRM) and Taiwanese reference woman (TRW). The height of the TRM phantom is 168.6 cm and the weight is 64.3 kg. The height of the TRW phantom is 156.9 cm and the weight is 54.5 kg. There are 15 organs in the TRM and TRW phantoms that have been used, including brain, eyes, nail glands, lungs and heart (wall), liver, stomach (wall), spleen, gallbladder, pancreas, kidney, bladder (wall), ovary, uterus and testes. Due to the poor performance of magnetic resonance imaging to identify bones, this study is based on the torso of the TRM and TRW phantoms and is scaled down based on the ORNL phantom. Furthermore, because the large intestine and small intestine belong to the deformed organ, this study has a large error to identify the boundary. Therefore, the organ of the ascending colon, transverse colon, descending colon, sputum colon and rectum is still revised with ORNL phantom.
The dose conversion coefficients (DCC) resulting from photo beams in anterior-posterior, posterior-anterior, right-lateral, left-lateral, and isotropic irradiation geometries were estimated. In the anterior-posterior geometry, the mean DCC differences among organs between the TRM and ORNL phantom at 0.1, 1, and 10 MeV were 7.3%, 5.8%, and 5.2%, respectively. For the TRW, the mean differences from the ORNL phantom at the three energies were 10.6%, 7.4%, and 8.3%. The DCCs of the Taiwanese reference phantoms and the ORNL phantom presented similar trends in other geometries. The torso size of the phantom and the mass and geometric location of the organ have a significant influence on the DCC. The Taiwanese reference phantoms can be used to establish dose guidelines and regulations for radiation protection from external exposure.
For the SAF calculation, the differences in the self-absorption SAF (self-SAF) between the TRM, TRW, and Oak Ridge National Laboratory (ORNL) adult phantom were less than 10% when the difference in organ mass was less than 20%. The average SAF from liver to pancreas of TRM was 38% larger than that of the ORNL adult phantom, and the result of TRW was 2.02 times higher than that of the ORNL adult phantom. For the S-value calculation, the ratios of TRW and ORNL adult phantom ranged from 0.91 to 1.57, and the ratios of TRM and ORNL adult phantom ranged from 1.04 to 2.29. The SAF and S-value results were dominantly affected by the height, weight, organ mass and geometric relationship between organs.
This study is the first complete development of Taiwan reference man (TRM and TRW) and establishes the DCC for the external dose assessment and the S values required for internal dose, which can increase the radiation protection accuracy.
1. International Commission on Radiological Protection, "Conversion coefficients for use in radiological protection against external radiation. ICRP Publication 74", Ann ICRP, 26(3-4): 1996. p. 1-205.
2. International Commission on Radiological Protection, "Dose coefficients for intakes of radionuclides by workers. A report of a Task Group of Committee 2 of the International Commission on Radiological Protection", Ann ICRP, 24(4): 1994. p. 1-83.
3. International Commission on Radiological Protection, "Report of the task group on reference man", Ann ICRP, 3(1-4): 1979. p. 1-480.
4. International Commission on Radiological Protection, "Human respiratory tract model for radiological protection. A report of a Task Group of the International Commission on Radiological Protection", Ann ICRP, 24(1-3): 1994. p. 1-482.
5. International Commission on Radiological Protection, "Basic anatomical and physiological data for use in radiological protection: the skeleton. A report of a Task Group of Committee 2 of the International Commission on Radiological Protection", Ann ICRP, 25(2): 1995. p. 1-80.
6. International Commission on Radiological Protection, "Doses to the embryo and fetus from intakes of radionuclides by the mother. A report of The International Commission on Radiological Protection", Ann ICRP, 31(1-3): 2001. p. 19-515.
7. International Commission on Radiological Protection, "Basic anatomical and physiological data for use in radiological protection: reference values. A report of age- and gender-related differences in the anatomical and physiological characteristics of reference individuals. ICRP Publication 89", Ann ICRP, 32(3-4): 2002. p. 5-265.
8. International Commission on Radiological Protection, "Adult Reference Computational Phantoms. ICRP Publication 110", Ann ICRP, 39(2): 2009.
9. Zankl, M., J. Becker, U. Fill, N. Petoussi-Henss, and K. Eckerman, "GSF male and female adult voxel models representing ICRP Reference Man–the present status", The Monte Carlo Method: Versatility Unbounded in a Dynamic Computing World, 1721(1): 2005.
10. International Commission on Radiological Protection, "The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103", Ann ICRP, 37(2-4): 2007. p. 1-332.
11. International Atomic Energy Agency, Compilation of Anatomical, Physiological and Metabolic Characteristics for a Reference Asian Man Volume 1: Data Summary and Conclusions. IAEA-TECDOC-1005. Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY, 1998.
12. International Atomic Energy Agency, Compilation of Anatomical, Physiological and Metabolic Characteristics for a Reference Asian Man Volume 2: Country Reports. IAEA-TECDOC-1005. Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY, 1998.
13. International Atomic Energy Agency, Reference Asian Man: Ingestion and Organ Content of Trace Elements of Importance in Radiological Protection. Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY, 2008.
14. X-Ray, I. and R.P. Commission, International recommendations for X-ray and radium protection. British Journal of Radiology, 1934.
15. Jones, C.G., "A review of the history of US radiation protection regulations, recommendations, and standards", Health physics, 88(2): 2005. p. 105-124.
16. International Commission on Radiological Protection, "International recommendations on radiological protection. Revised by the ICRP and the 6th International Congress of Radiology, London", Br. J. Radiol., 24: 1950. p. 46-53.
17. International Commission on Radiological Protection, Recommendations of the International Commission on Radiological Protection. Now known as ICRP Publication 1.: Pergamon Press, New York., 1959.
18. International Commission on Radiological Protection, Report of Committee II on Permissible Dose for Internal Radiation. ICRP Publication 2.: Pergamon Press, London., 1960.
19. International Commission on Radiological Protection, Recommendations of the International Commission on Radiological Protection. ICRP Publication 9.: Pergamon Press, Oxford., 1966.
20. International Commission on Radiological Protection, "Recommendations of the ICRP, ICRP Publication 26", Ann ICRP, 1(3): 1977. p. 3-6.
21. Broad, C.D., C. Lewy, and T. Honderich, "Kant: an introduction": 1979.
22. International Commission on Radiological Protection, "1990 Recommendations of the International Commission on Radiological Protection", Ann ICRP, 21(1-3): 1991. p. 1-201.
23. Hayes, R.L. and M. Brucer, "Compartmentalized phantoms for the standard man, adolescent and child", Int J Appl Radiat Isot, 9: 1960. p. 113-8.
24. Fisher Jr, H., "Variation of dose delivered by^< 137> Cs as a function of body size from infancy to adulthood", ORNL-4007: 1966. p. 221-228.
25. Snyder, W. VARIATION OF DOSE IN MAN FROM EXPOSURE TO A POINT SOURCE OF GAMMA RAYS. in pp 7-11 of Congres International sur la Radioprotection dans l'Utilisation Industrielle des Radioelements, Paris, 13-15 Decembre 1965. Paris, Service Centra de Protection Contre les Rayonnements Io. 1968. Oak Ridge National Lab., Tenn.
26. Snyder, W.S., M.R. Ford, G.G. Warner, and H. Fisher Jr, Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. 1969, Oak Ridge National Lab., Tenn.
27. Snyder, W., "MIRD Pamphlet No. 5: Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom", J. nucl. Med., 10: 1969. p. 1.
28. Man, I.C.o.R.P.T.G.o.R., Report of the Task Group on Reference Man: A Report. Vol. 23. Pergamon Press, 1975.
29. Snyder, W., M. Ford, G. Warner, and S. Watson, "MIRD pamphlet no. 11: S, absorbed dose per unit cumulated activity for selected radionuclides and organs", New York: Society of Nuclear Medicine: 1975.
30. Kramer, R., J.W. Vieira, F.R. Lima, and D. Fuelle, "An EGS4 based Monte Carlo code for the calculation of organ equivalent dose to a modified Yale voxel phantom", Cell Mol Biol (Noisy-le-grand), 48(5): 2002. p. 465-73.
31. Hwang, J., R. Shoup, and J. Poston, Mathematical description of a newborn human for use in dosimetry calculations. 1976, Oak Ridge National Lab., Tenn.(USA).
32. Jones, R.M., J. Poston, J. Hwang, T. Jones, and G. Warner, Development and use of a fifteen year-old equivalent mathematical phantom for internal dose calculations. 1976, Oak Ridge National Lab.
33. Deus, S. and J. Poston. The development of a mathematical phantom representing a 10-year-old for use in internal dose calculations. in Proc. of the Symp. on Radiopharmaceutical Dosimetry HEW Publication 76. 1976.
34. Cristy, M. and K. Eckerman, "Specific absorbed fractions of energy at various ages from internal photon sources. Oak Ridge, TN: Oak Ridge National Laboratory", ORNL/TM-8381, 1: 1987.
35. Stabin, M., E. Watson, M. Cristy, J. Ryman, K. Eckerman, J. Davis, et al., Mathematical models and specific absorbed fractions of photon energy in the nonpregnant adult female and at the end of each trimester of pregnancy. 1995, Oak Ridge National Lab., TN (United States).
36. Eckerman, K., M. Cristy, and J. Ryman, "The ORNL mathematical phantom series", Oak Ridge, TN: Oak Ridge National Laboratory: 1996.
37. Park, S., J.K. Lee, J.I. Kim, Y.J. Lee, Y.K. Lim, C.S. Kim, et al., "In vivo organ mass of Korean adults obtained from whole-body magnetic resonance data", Radiat Prot Dosimetry, 118(3): 2006. p. 275-9.
38. Park, S., J.K. Lee, C. Lee, and C. Lee, "Dosimetry calculations for internal electron sources using a Korean reference adult stylised phantom", Radiat Prot Dosimetry, 130(2): 2008. p. 186-205.
39. Yamauchi, M., M. Ishikawa, and M. Hoshi, "A stylized computational model of the head for the reference Japanese male", Med Phys, 32(1): 2005. p. 85-92.
40. Qiu, R., J. Li, Z. Zhang, Z. Wu, Z. Zeng, and J. Fan, "Photon SAF calculation based on the Chinese mathematical phantom and comparison with the ORNL phantoms", Health Phys, 95(6): 2008. p. 716-24.
41. Qiu, R., J. Li, Z. Zhang, L. Liu, L. Bi, and L. Ren, "Dose conversion coefficients based on the Chinese mathematical phantom and MCNP code for external photon irradiation", Radiat Prot Dosimetry, 134(1): 2009. p. 3-12.
42. Zankl, M., R. Veit, G. Williams, K. Schneider, H. Fendel, N. Petoussi, et al., "The construction of computer tomographic phantoms and their application in radiology and radiation protection", Radiat Environ Biophys, 27(2): 1988. p. 153-64.
43. Pujol, A., Jr. and S.J. Gibbs, "A Monte Carlo method for patient dosimetry from dental X-ray", Dentomaxillofac Radiol, 11(1): 1982. p. 25-33.
44. Gibbs, S.J., A. Pujol, Jr., T.S. Chen, A.W. Malcolm, and A.E. James, Jr., "Patient risk from interproximal radiography", Oral Surg Oral Med Oral Pathol, 58(3): 1984. p. 347-54.
45. Gibbs, S.J., A. Pujol, Jr., T.S. Chen, J.C. Carlton, M.A. Dosmann, A.W. Malcolm, et al., "Radiation doses to sensitive organs from intraoral dental radiography", Dentomaxillofac Radiol, 16(2): 1987. p. 67-77.
46. Williams, G., M. Zankl, W. Abmayr, R. Veit, and G. Drexler, "The calculation of dose from external photon exposures using reference and realistic human phantoms and Monte Carlo methods", Phys Med Biol, 31(4): 1986. p. 449-52.
47. Smith, T., N. Petoussi-Henss, and M. Zankl, "Comparison of internal radiation doses estimated by MIRD and voxel techniques for a "family" of phantoms", Eur J Nucl Med, 27(9): 2000. p. 1387-98.
48. Petoussi-Henss, N., M. Zanki, U. Fill, and D. Regulla, "The GSF family of voxel phantoms", Phys Med Biol, 47(1): 2002. p. 89-106.
49. Zanki, M., U. Fill, N. Petoussi-Henss, and D. Regulla, "Organ dose conversion coefficients for external photon irradiation of male and female voxel models", Phys Med Biol, 47(14): 2002. p. 2367-85.
50. Fill, U.A., M. Zankl, N. Petoussi-Henss, M. Siebert, and D. Regulla, "Adult female voxel models of different stature and photon conversion coefficients for radiation protection", Health Phys, 86(3): 2004. p. 253-72.
51. Becker, J., M. Zankl, and N. Petoussi-Henss, "A software tool for modification of human voxel models used for application in radiation protection", Phys Med Biol, 52(9): 2007. p. N195-205.
52. Zankl, M. and A. Wittmann, "The adult male voxel model "Golem" segmented from whole-body CT patient data", Radiat Environ Biophys, 40(2): 2001. p. 153-62.
53. Units, I.C.o.R. and Measurements, "Photon, electron, proton and neutron interaction data for body tissues", ICRU Report No. 46: 1992.
54. Yeom, Y.S., M.C. Han, C.H. Kim, and J.H. Jeong, "Conversion of ICRP male reference phantom to polygon-surface phantom", Phys Med Biol, 58(19): 2013. p. 6985-7007.
55. Dimbylow, P. The development of realistic voxel phantoms for electromagnetic field dosimetry. in Proc. of an International Workshop at NRPB" Voxel Phantom Development,". 1995.
56. Dimbylow, P., "Development of the female voxel phantom, NAOMI, and its application to calculations of induced current densities and electric fields from applied low frequency magnetic and electric fields", Phys Med Biol, 50(6): 2005. p. 1047-70.
57. Dimbylow, P., "Resonance behaviour of whole-body averaged specific energy absorption rate (SAR) in the female voxel model, NAOMI", Phys Med Biol, 50(17): 2005. p. 4053-63.
58. Caon, M., G. Bibbo, and J. Pattison, "An EGS4-ready tomographic computational model of a 14-year-old female torso for calculating organ doses from CT examinations", Physics in Medicine & Biology, 44(9): 1999. p. 2213.
59. Caon, M., G. Bibbo, and J. Pattison, "Monte Carlo calculated effective dose to teenage girls from computed tomography examinations", Radiation protection dosimetry, 90(4): 2000. p. 445-448.
60. Xu, X., T. Chao, and A. Bozkurt, "VIP-Man: an image-based whole-body adult male model constructed from color photographs of the Visible Human Project for multi-particle Monte Carlo calculations", Health Physics, 78(5): 2000. p. 476-486.
61. Shi, C. and X.G. Xu, "Development of a 30-week-pregnant female tomographic model from computed tomography (CT) images for Monte Carlo organ dose calculations", Med Phys, 31(9): 2004. p. 2491-7.
62. Saito, K., A. Wittmann, S. Koga, Y. Ida, T. Kamei, J. Funabiki, et al., "Construction of a computed tomographic phantom for a Japanese male adult and dose calculation system", Radiat Environ Biophys, 40(1): 2001. p. 69-75.
63. Sato, K., H. Noguchi, A. Endo, Y. Emoto, S. Koga, and K. Saito, "Development of a voxel phantom of Japanese adult male in upright posture", Radiat Prot Dosimetry, 127(1-4): 2007. p. 205-8.
64. Sato, K., H. Noguchi, Y. Emoto, S. Koga, and K. Saito, "Japanese adult male voxel phantom constructed on the basis of CT images", Radiat Prot Dosimetry, 123(3): 2007. p. 337-44.
65. Saito, K., S. Koga, Y. Ida, T. Kamei, and J. Funabiki, "Construction of a voxel phantom based on CT data for a Japanese female adult and its use for calculation of organ doses from external electrons", Japanese Journal of Health Physics, 43(2): 2008. p. 122-130.
66. Saito, K., K. Sato, S. Kinase, F. Takahashi, and A. Endo, "[Development of Japanese voxel phantoms and dose evaluation]", Nihon Hoshasen Gijutsu Gakkai Zasshi, 67(3): 2011. p. 266-75.
67. Nagaoka, T., S. Watanabe, K. Sakurai, E. Kunieda, S. Watanabe, M. Taki, et al., "Development of realistic high-resolution whole-body voxel models of Japanese adult males and females of average height and weight, and application of models to radio-frequency electromagnetic-field dosimetry", Phys Med Biol, 49(1): 2004. p. 1-15.
68. Nagaoka, T., E. Kunieda, and S. Watanabe, "Proportion-corrected scaled voxel models for Japanese children and their application to the numerical dosimetry of specific absorption rate for frequencies from 30 MHz to 3 GHz", Physics in Medicine & Biology, 53(23): 2008. p. 6695.
69. Lee, C. and C.H. Kim, Korean Computational Phantoms: KMIRD, KORMAN, KORWOMAN, KTMAN-1, KTMAN-2, and HDRK-Man, in Handbook of Anatomical Models for Radiation Dosimetry. 2009, CRC Press. p. 275-298.
70. Choi, S.H., C.-S. Lee, S.K. Cho, M.S. Chung, S.H. Na, and C.H. Kim. Construction of a high-definition ‘Reference Korean’voxel phantom for organ and tissue radiation dose calculation. in World Congress on Medical Physics and Biomedical Engineering 2006. 2007. Springer.
71. Kim, C.H., S.H. Choi, J.H. Jeong, C. Lee, and M.S. Chung, "HDRK-Man: a whole-body voxel model based on high-resolution color slice images of a Korean adult male cadaver", Phys Med Biol, 53(15): 2008. p. 4093-106.
72. Yeom, Y.S., J.H. Jeong, C.H. Kim, M.C. Han, B.K. Ham, K.W. Cho, et al., "HDRK-Woman: whole-body voxel model based on high-resolution color slice images of Korean adult female cadaver", Phys Med Biol, 59(14): 2014. p. 3969-84.
73. Kim, J., J. Kim, C. Kim, and J. Whang, "Calculating specific absorbed fractions with standard Korean male adults", Radiation Measurements, 45(1): 2010. p. 103-109.
74. Kim, J.S., W.H. Ha, J.H. Jeong, K.W. Cho, and J.K. Lee, "Use of photographic images to construct voxel phantoms for use in whole-body counting", Radiat Prot Dosimetry, 138(2): 2010. p. 119-22.
75. Zhang, B., J. Ma, L. Liu, and J. Cheng, "CNMAN: a Chinese adult male voxel phantom constructed from color photographs of a visible anatomical data set", Radiat Prot Dosimetry, 124(2): 2007. p. 130-6.
76. Zhang, G., Q. Liu, and Q. Luo, "Monte Carlo simulations for external neutron dosimetry based on the visible Chinese human phantom", Phys Med Biol, 52(24): 2007. p. 7367-83.
77. Zhang, G., Q. Liu, S. Zeng, and Q. Luo, "Organ dose calculations by Monte Carlo modeling of the updated VCH adult male phantom against idealized external proton exposure", Phys Med Biol, 53(14): 2008. p. 3697-722.
78. Zhang, G., Q. Luo, S. Zeng, and Q. Liu, "The development and application of the visible Chinese human model for Monte Carlo dose calculations", Health Phys, 94(2): 2008. p. 118-25.
79. Li, J., R. Qiu, Z. Zhang, L. Liu, Z. Zeng, L. Bi, et al., "Organ dose conversion coefficients for external photon irradiation using the Chinese voxel phantom (CVP)", Radiat Prot Dosimetry, 135(1): 2009. p. 33-42.
80. Sheng, Y., L. Tan, J. Jeon, and X. Xia, "Development of a Voxel-based Chinese reference female phantom from color photographs for radiation dosimetry applications", Health Phys, 105(6): 2013. p. 512-21.
81. Zankl, M., J. Becker, N. Petoussi-Henss, H. Schlattl, W. Bolch, K. Eckerman, et al. The reference computational phantoms adopted by ICRP and ICRU. in World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich, Germany. 2009. Springer.
82. 王正寧、許任玓、張栢菁, 數值化人體模型器官劑量計算分析. 行政院原子能委員會核能研究所, 2003.
83. 吳杰、張淑君、王正寧, "混合型參考人假體應用於體內劑量評估之研究", 台灣放射線技術論文雜誌, 創刊號: 2004. p. p.51-70.
84. 蔡書汎, "使用電腦斷層影像建立台灣成年人之體素式假體 ", 國立清華大學, 碩士論文, 2009.
85. 蔡宜君, "中國參考成年女性體素式假體之解析度改善及其器官劑量之計算", 長庚大學, 碩士論文, 2013.
86. International Commission on Radiological Protection, "Data for Use in Protection against External Radiation. ICRP Publication 51", Ann ICRP, 17(2-3): 1987.
87. ICRP, "Conversion Coefficients for use in Radiological Protection against External Radiation. ICRP Publication 74", Ann ICRP, 26(3-4): 1996.
88. International Commission on Radiological Protection, "Conversion Coefficients for Radiological Protection Quantities for External Radiation Exposures. ICRP Publication 116", Ann ICRP, 40(2-5): 2010.
89. International Commission on Radiological Protection, Data for Protection Against Ionizing Radiation from External Sources: Supplement to ICRP Publication 15. ICRP Publication 21. Pergamon Press, Oxford., 1973.
90. Yamaguchi, Y., "Age-dependent effective doses for external photons", Radiation protection dosimetry, 55(2): 1994. p. 123-129.
91. Chou, D.P., J.N. Wang, and I.J. Chen, "Age-dependent protection quantities for external photon irradiation", Radiat Prot Dosimetry, 95(3): 2001. p. 215-23.
92. Petoussi, N., P. Jacob, M. Zankl, and K. Saito, "Organ doses for foetuses, babies, children and adults from environmental gamma rays", Radiation Protection Dosimetry, 37(1): 1991. p. 31-41.
93. Petoussi-Henss, N., H. Schlattl, M. Zankl, A. Endo, and K. Saito, "Organ doses from environmental exposures calculated using voxel phantoms of adults and children", Physics in Medicine & Biology, 57(18): 2012. p. 5679.
94. Zankl, M., W. Panzer, and G. Drexler, "The calculation of organ doses from computed tomography examinations", Radiation Protection Dosimetry, 43(1-4): 1992. p. 237-239.
95. Zankl, M., W. Panzer, H. Petoussi-Henss, and G. Drexler, "Organ doses for children from computed tomographic examinations", Radiation Protection Dosimetry, 57(1-4): 1995. p. 393-396.
96. Veit, R. and M. Zankl, "Variation of organ doses in paediatric radiology due to patient diameter, calculated with phantoms of varying voxel size", Radiation Protection Dosimetry, 49(1-3): 1993. p. 353-356.
97. Zankl, M., W. Panzer, and C. Herrmann, "Calculation of patient doses using a human voxel phantom of variable diameter", Radiation protection dosimetry, 90(1-2): 2000. p. 155-158.
98. Lee, C., C. Lee, and W.E. Bolch, "Age-dependent organ and effective dose coefficients for external photons: a comparison of stylized and voxel-based paediatric phantoms", Physics in Medicine & Biology, 51(18): 2006. p. 4663.
99. Lee, C., C. Lee, S.H. Park, and J.K. Lee, "Development of the two Korean adult tomographic computational phantoms for organ dosimetry", Medical physics, 33(2): 2006. p. 380-390.
100. International Commission on Radiological Protection, "Limits for Intakes of Radionuclides by Workers. ICRP Publication 30", Ann ICRP, 8(4): 1982. p. 3-6.
101. International Commission on Radiological Protection, "Human Respiratory Tract Model for Radiological Protection. ICRP Publication 66", Ann ICRP, 24(1-3): 1994.
102. Bolch, W.E., K.F. Eckerman, G. Sgouros, and S.R. Thomas, "MIRD pamphlet no. 21: a generalized schema for radiopharmaceutical dosimetry—standardization of nomenclature", Journal of Nuclear Medicine, 50(3): 2009. p. 477-484.
103. 衛生福利部統計處, "4.2-02居民體位及肥胖症狀—身高、體重、身體質量指數", https://dep.mohw.gov.tw/DOS/lp-1720-113.html.
104. Akkurt, H. and K.F. Eckerman, Development of PIMAL: mathematical phantom with moving arms and legs. 2007, Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States).
105. Team, X.-M.C., MCNP—A General Monte Carlo N-Particle Transport Code, Version 5. 2003, Los Alamos National Laboratory Los Alamos, NM.
106. Wu, J., Y.L. Liu, S.J. Chang, M.M. Chao, S.Y. Tsai, and D.E. Huang, "Dose point kernel simulation for monoenergetic electrons and radionuclides using Monte Carlo techniques", Radiat Prot Dosimetry, 152(1-3): 2012. p. 119-24.
107. Liu, Y.L., C.T. Shih, Y.J. Chang, S.J. Chang, and J. Wu, "Performance enhancement of a web-based picture archiving and communication system using commercial off-the-shelf server clusters", Biomed Res Int, 2014: 2014. p. 657417.
108. Sieper, J., S. Srinivasan, O. Zamani, H. Mielants, D. Choquette, K. Pavelka, et al., "Comparison of two referral strategies for diagnosis of axial spondyloarthritis: the Recognising and Diagnosing Ankylosing Spondylitis Reliably (RADAR) study", Annals of the rheumatic diseases, 72(10): 2013. p. 1621-1627.
109. RADAR - the RAdiation Dose Assessment Resource. Available from: http://doseinfo-radar.com/RADARHome.html.
110. 吳杰、張淑君、王正寧, 體內劑量混合型參考人假體之建立. 行政院原子能委員會核能研究所, 2004.
111. Thomas, S.R., M.G. Stabin, C.-T. Chen, and R.C. Samaratunga, "MIRD Pamphlet No. 14 Revised: A Dynamic Urinary Bladder Model for Radiation Dose", J Nucl Med, 40: 1999. p. 102S-123S.
112. Stabin, M.G., R.B. Sparks, and E. Crowe, "OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine", J Nucl Med, 46(6): 2005. p. 1023-7.
113. Clairand, I., L.G. Bouchet, M. Ricard, M. Durigon, M. Di Paola, and B. Aubert, "Improvement of internal dose calculations using mathematical models of different adult heights", Phys Med Biol, 45(10): 2000. p. 2771-85.