簡易檢索 / 詳目顯示

研究生: 蔡宜家
I-Chia Tsai
論文名稱: 鎳氫電池正極活性材料---氫氧化鎳之合成及其效能評估
Positive active materials of nickel-metal hydride battery---The synthesis of nickel hydroxide and the assessment of its properties
指導教授: 王詠雲
Dr. Yung-Yun Wang
萬其超
Dr. Chi-Chao Wan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 72
中文關鍵詞: 鎳氫電池氫氧化鎳
外文關鍵詞: nickel-metal hydride battery, nickel hydroxide
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    本實驗採用水溶液法之一的「直接生成法」合成氫氧化鎳粉末,藉由改變反應時間、鎳鹽種類以及添加界面活性劑等方式,得到在5 ~ 30 mm分佈範圍內6種氫氧化鎳粉末,分別為樣品A(硫酸鎳為鎳鹽;反應時間12小時)、樣品A-1(硫酸鎳為鎳鹽;反應時間12小時並老化(aging)處理)、樣品A-2(硫酸鎳為鎳鹽;反應時間2小時)、樣品A-3(硫酸鎳為鎳鹽;反應時間2小時並老化處理)、樣品B(草酸鎳為鎳鹽;反應時間12小時)以及樣品C(硫酸鎳為鎳鹽;反應時間12小時並加入界面活性劑)。經FT-IR、XRD等結構鑑定後,除樣品A-2為bbc(badly-crystallized b)結構外,其餘5種樣品均為b型態之氫氧化鎳。

    由充放電的實驗可知,此5種樣品之放電電容量值均約為160 mAh/g。雖然文獻中指出粒子較小之電極有較好的電化學活性,但顆粒小則容易由極板上脫落,造成活性物質利用率下降。故樣品B雖有較小的平均粒徑,但充放電約3次後則放電電容量減少;樣品C則因添加界面活性劑使得晶粒間的阻抗增加,因此較慢才達到放電電容量值。而樣品A-2的放電電容量只有140 mAh/g左右,由交流阻抗分析及循環伏安實驗可看到其反應不易進行,推測是由於樣品A-2的結晶狀態較差,質子傳遞不易,故其放電電容量比其他組樣品小。根據此實驗結果我們發現,在5 ~ 30 mm的分佈範圍內,顆粒大小並非影響氫氧化鎳電極性能的關鍵因素,氫氧化鎳本身的結構型態才是影響其性質之主因。

    另外,由熱分析實驗可知,經老化處理後得之氫氧化鎳粉末的起始分解溫度及熔點有提高的現象,表示其熱安定性較佳。且縮短反應時間為2小時並老化處理後所得的氫氧化鎳粉末,亦為b之型態,其放電電容量與反應時間12小時所得的氫氧化鎳相當。因此多了老化處理步驟,可以減少合成反應的時間,便可得到熱性質及電化學性質兼具之正極活性材料。


    目 錄 摘要……………………………………………………………………….i 謝誌……………………………………………………………………...iii 目錄……………………………………………………………………...iv 表目錄…………………………………………………………………..vii 圖目錄………………………………………………………………….viii 第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 第二章 文獻回顧 5 2-1 鎳氫電池簡介 5 2-1-1 鎳氫電池之一般反應 5 2-1-2 鎳氫電池之組件 6 2-1-3 鎳氫電池之自放電 7 2-1-4 鎳氫電池之高速放電 9 2-2 正極材料 9 2-2-1 a-Ni(OH)2為活性材料的正極反應 11 2-2-2 b-Ni(OH)2為活性材料的正極反應 12 2-2-3 正極材料之合成 12 2-3 Ni(OH)2正極性能之改進 16 2-3-1 添加劑 16 2-3-2 添加法 19 2-3-3 無電鍍處理 20 2-4 正極表面行為 21 2-4-1 交流阻抗應用於鎳氫電池正極之分析 21 2-4-2 質子擴散行為 24 第三章 實驗 25 3-1 實驗藥品及儀器 25 3-2 材料製備 26 3-3 材料鑑定 28 3-4 電池製作及組裝 30 3-5 電池性能測試 31 3-5-1 充放電測試 31 3-5-2 交流阻抗分析 32 3-5-2-1 交流阻抗分析原理 32 3-5-2-2 交流阻抗分析實驗 33 3-5-3 循環伏安實驗 34 第四章 實驗結果與討論 35 4-1 基本結構形貌分析 36 4-1-1 粒徑分析(LPA) 36 4-1-2 氫氧化鎳表面形態分析(SEM) 37 4-1-3 氫氧化鎳結構組織分析 40 4-1-4 熱性質分析 44 4-2 電化學性質測試 52 4-2-1 鎳極充放電測試 52 4-2-2 鎳極交流阻抗分析 56 4-2-3 循環伏安實驗 58 4-3 鎳極電容量與其物性之關係 59 第五章 結論 64 第六章 參考文獻 66 表目錄 表1.1 市售電池比較對照表 1 表1.2 市售氫氧化鎳產品品質分析 2 表2.1 鎳電極充放電體積變化比 12 表4.1 不同氫氧化鎳樣品之晶格常數 41 表4.2 不同氫氧化鎳樣品之TGA及DTA實驗結果 45 表4.3 不同氫氧化鎳樣品之分解起始、結束溫度結果 52 表4.4 不同氫氧化鎳樣品之DSC實驗結果 52 表4.5 氫氧化鎳粉末之放電電容量(mAh/g) 44 表4.6 不同氫氧化鎳樣品之電荷轉移阻抗值,RCT(W g) 57 表4.7 不同氫氧化鎳樣品之循環伏安實驗結果 59 圖目錄 圖1.1 整體實驗之流程圖 4 圖2.1 圓柱形鎳氫電池結構圖 7 圖2.2 電容量與放電電流之關係圖 9 圖2.3 Ni(OH)2結構示意圖 10 圖2.4 Bode圖 11 圖2.5 添加鈷之反應假想模型圖 17 圖2.6 氫氧化鎳充放電反應機制圖 22 圖2.7 Barton鎳電極等效電路圖 22 圖2.8 Zhang實驗之交流阻抗分析圖 23 圖2.9 Zhang實驗之等效電路圖 23 圖3.1 草酸鎳之紅外線光譜圖 28 圖3.2 電池組裝圖 31 圖3.3 電池充放電裝置圖 31 圖3.4 (a)一個簡單RC電路及其(b)標準之阻抗圖 33 圖3.5 交流阻抗分析實驗裝置圖 34 圖3.6 循環伏安實驗裝置圖 34 圖4.1 不同氫氧化鎳樣品之粒徑分佈圖 38 圖4.2 不同氫氧化鎳樣品之SEM圖 39 圖4.3 不同氫氧化鎳樣品之紅外線光譜圖 42 圖4.4 不同氫氧化鎳樣品之XRD光譜圖 43 圖4.5 不同氫氧化鎳樣品之熱重損失TGA及微導數熱重量 測定DTG分析圖 46 圖4.6 不同之氫氧化鎳樣品之熱差掃描卡計DSC圖 49 圖4.7 不同氫氧化鎳樣品正極之放電電容量與循環次數 間的關係圖 56 圖4.8 不同氫氧化鎳樣品充放電前之交流阻抗分析圖 58 圖4.9 不同氫氧化鎳樣品正極之循環伏安圖 61

    第六章 參 考 文 獻
    [1] 梁桂肇,”鎳氫電池市場與發展”,工業材料,第111期,70 (1996).
    [2] 張超群、陳美文,“二次電池材料專題調查報告”,工研院化學工業研究所,16 (1998).
    [3] 曾文蔚,”鎳氫電池在電動車輛之應用”,工業材料,第153期,162 (1999).
    [4] 楊純誠,林聲仁,”以沉澱法製備氫氧化鎳(Ni(OH)2)粉末”,明志技術學院化工系。
    [5] 陳世渝,”鎳氫化物電池的材料與技術”,工業材料,第111期,77 (1996).
    [6] M. E. Unates, M. E. Folquer, J. R. Vilche, and A. J. Arvia, “The influence of foreign cations on the electrochemical behavior of the nickel hydroxide”, J. Electrochem. Soc., 139, 2697 (1992).
    [7] D. Linden, Sealed nickel-metal hydride batteries, in Handbook of Batteries, David Linden, 2nd edition, p.33.1, McGRAW-HILL, INC., New York (1995).
    [8] B. E. Conway and P. L. Bourgault, Can. J. Chem., 37, 292 (1959).
    [9] M. Oshitani, M. Watada, T. Tanaka, and T. Iida, “Development of a high-energy-density cadmium-free nickel hydroxide battery”, Electrochem. Soc. Proceedings, 27, 303 (1994).
    [10] M. Ikoma, Y. Hoshina, and Matsumoto, “Self-discharge mechanism of sealed-type nickel/metal-hydride battery”, J. Electrochem. Soc., 143, 1904 (1996).
    [11] T. Sakai, A.Yuasa, H. Ishikawa, H. Miyamura, and N. Kuriyama, “Nickel-metal hydride battery using microencapsulated alloys”, J. Less-Common Metals”, 172, 1194 (1991).
    [12] C. Iwakura and M. Matsuoka, “Application of hydrogen storage alloys to battery-related fields: nickel-hydrogen batteries”, Progress in Batteries & Battery Materials, 10, 81 (1991).
    [13] M. R. Gennero De Chialvo and A. C. Chialvo, “Nickel hydroxide film electroformation in alkaline chloride solutions”, J. Appl. Electrochem., 19, 429 (1989).
    [14] Michael Rajamathi and P. Vishni Kamath, “On the relationship between a-nickel hydroxide and the basic salts of nickel”, J. Power Sources, 70, 118 (1998).
    [15] C. Delmas, C. Faure, and Y. Borthomien, “The effect of cobalt on the chemical and electrochemical behavior of the nickel hydroxide electrode”, Materials Science and Engineering, B13, 89 (1992).
    [16] V. G. Kumar, N. Munichandraiah, P. V. Kamath, and A. K. Shukla, “On the performance of stabilized a-nickel hydroxide as a nickel positive electrode in alkaline storage batteries”, J. Power Sources, 56, 111 (1995).
    [17] C. Faure and C. Delmas, “Electrochemical behavior of a-cobalted nickel hydroxide electrodes”, J. Power Sources, 36, 497 (1991).
    [18] Mridula Dixit, P. Vishnu Kamath, and J. Gopalakrishnan, “Zinc-substituted a-nickel hydroxide as an electrode material for alkaline secondary cells”, J. Electrochem. Soc., 146, 79 (1999).
    [19] 陳志信,林際健,”二次鎳氫電池特性及充電方法研究”,能源季刊,第25期,42 (1995).
    [20] Anbao Yuan, Shaoan Cheng, Jianqing Ahang, and Chunan Cao, “Effects of metallic cobalt addition on the performance of pasted nickel electrodes”, J. Power Sources, 77, 178 (1999).
    [21] He Wanning, Qin Shibiao, Li Zongxiong, and Yang Jian, “New Process for preparing high density spherical nickel hydroxide”, Chinese J. Power Sources, 19, 1 (1995).
    [22] Sun Yang, Tian Yanwen, Zhai Xiujing, and Zhai Yuchun, “Research progress on manufacturing techniques of cathode material Ni(OH)2”, Chinese J. Power Sources, 21, 178 (1997).
    [23] Chang Zhaorong, Li Gongan, and Zhao Yujuan, “Influence of preparation conditions of spherical nickel hydroxide on its electro-chemical properties”, J. Power Sources, 74, 252 (1998).
    [24] Ettel; Victor A., Babjak; Juraj, Baksa; Stephen J., and Bell; James A. E., “Nickel hydroxide”, U. S. Patent No. 5,281,494 (1990).
    [25] Terada Yasuhiko, Abe Kazunobu, Uno Hajime, and Shirasaki Shinichi, “Process for producing metal hydroxide sol”, European Patent No. 0,428,389,A2 (1991).
    [26] Tripp; Terence Cordon, “Production of alkoxides”, U. S. Patent No. 3,730,857 (1971).
    [27] P. Vishnu Kamath and G. N. Subbanna, “Electroless nickel hydroxide: synthesis and characterization”, J. Appl. Electrochem., 22, 478 (1992).
    [28] Yuan Gaoqing, Gehuacai, and Fan Xiangqing, ”Preparation of high activity nickel hydroxide material of MH/Ni secondary battery”, Battery Bimonthly, 28, 105 (1998).
    [29] Wei Ying and Xia Xi, “The preparation of nano cathode material and study of it’s electrochemical performance”, Chinese J. Power Sources, 22, 139 (1998).
    [30] M. Oshitani, H. Yufu, K. Takashima, S. Tsuji, and Y. Matsunaru, “Development of a pasted nickel electrode with high active material utilization”, J. Electrochem. Soc., 136, 1590 (1989).
    [31] B. B. Fzhov and O. G. Malandin, “Structure modification and change of electrochemical activity of nickel hydroxide”, J. Electro-chem. Soc., 138, 885 (1991).
    [32] M. Oshitini, T. Kakayama, K. Takashima, and S. Tsuji, “A study on the swelling of a sintered nickel hydroxide electrode”, J. Appl. Electrochem., 16, 403 (1986).
    [33] W. H. Zhu, J. J. Ke, H. M. Yu, and D. J. Zhang, “A study of the electrochemistry of nickel hydroxide electrodes with various additives”, J. Power Sources, 56, 75 (1995).
    [34] Ding Yunchang, Yuan Jiongliang, and Chang Zhaorong, “Cyclic voltammetry response of co-precipitated Ni(OH)2 electrode in 5 M KOH solution”, J. Power Sources, 69, 47 (1997).
    [35] Cheng Shaoan, Yuan Anbao, Liu Hong, Zhang Jianqing, and Cao Chunan, “Effects of barium and cobalt on electrochemical performance of nickel hydroxide with chemically co-precipitated zinc”, J. Power Sources, 76, 215 (1998).
    [36] Ikoma, “Nickel positive electrode for use in alkaline storage battery and nickel-hydrogen storage battery using the same positive electrode”, U.S. Patent No.5, 466, 543 (1995).
    [37] Ohta, “Nickel positive electrode for alkaline storage battery and sealed nickel-hydrogen storage battery using nickel positive electrode”, U.S. Patent No.5, 451, 475 (1995).
    [38] R. D. Armstrong, G. W. D. Briggs, and E. A. Charles, “Some effects of the addition of cobalt to the nickel hydroxide”, J. Applied Electrochemistry, 18, 215 (1988).
    [39] 王錦景,”添加劑對氫氧化鎳電極之效應”, 碩士論文,國立中央大學化工所,中華民國台灣 (1996).
    [40] Ding Yunchang, Yuan Jiongliang, Wang Zeyun, Ding Yong, and Guo Bao Sheng, “Effects of surface modification of Ni(OH)2 powders on the performance of nickel cathodes”, J. Power Sources, 66, 55 (1997).
    [41] Zhaorong Chang, Yujuan Zhao, and Yungchang Ding, “Effects of different methods of cobalt addition on the performance of nickel electrodes”, J. Power Sources, 77, 69 (1999).
    [42] 黃振銘,”鎳氫電池正極表面處理研究”,碩士論文,國立清華大學化工所,中華民國台灣 (1997).
    [43] 劉國慶,”鎳氫電池正極表面處理研究”,碩士論文,國立清華大學化工所,中華民國台灣 (1998).
    [44] V. Mancier, A. Metrot, and P. Willmann, “AC impedance modelling of nickel hydroxide electrodes viewed as mixed protonic-electronic conductors”, Electrochem. Acta., 41, 1259 (1996).
    [45] S. Motupally, C. C. Streinz, and John Weidner, “Proton diffusion in nickel hydroxide”, J. Electrochem. Soc., 145, 29 (1998).
    [46] S. Motupally, C. C. Streinz, and J. W. Weidner, “Proton diffusion in nickel hydroxide films”, J. Electrochem. Soc., 142, 1401 (1995).
    [47] R. T. Barton, M. Hughes, S. A. G. R. Karunathilaka, and N. A. Hampson, “Impedance of the sintered nickel positive electrode”, J. Appl. Electrochem., 15, 1401 (1995).
    [48] Yunshi Zhang, Zhen Zhou, and Jie Yan, “Electrochemical behavior of Ni(OH)2 ultrafine powder”, J. Power Sources, 75, 283 (1998).
    [49] X. Y. Wang, J. Yan, Y. S. Zhang, H. T. Yuan, and D. Y. Song, “Cyclic voltammetric studies of pasted nickel hydroxide electrode microencapsulated by cobalt”, J. Appl. Electrochem., 28, 1377 (1998).
    [50] P. G. Dickens, S. J. Hibble, and R. H. Jarman, “Hydrogen insertion compounds of transition metal oxides”, J. Electro. Mater., 10, 999 (1981).
    [51] Christopher C. Streinz, Andrew P. Hartman, Sathya Motupally, and John W. Weidner, “The effect of current and nickel nitrate concentration on the deposition of nickel hydroxide films”, J. Electrochem. Soc., 142, 1084 (1995).
    [52] M. C. Bernard, P. Bernard, M. Keddam, S. Senyarich, and H. Takenouti, “Characterisation of new nickel hydroxides during the transformation of a Ni(OH)2 to b Ni(OH)2 by ageing”, Electrochim. Acta, 41, 91 (1996).
    [53] L. G. Wade, Jr., Infrared spectroscopy and mass spectroscopy, in Organic Chemistry, 3rd edition, p.480, Prentice Hall International, Inc., New Jersey (1995).
    [54] Chang Zhaorong, Ding Yunchang, Zhang Shuxia, and Wang Zeyun, “Influence of size distribution on the activity of spherical nickel hydroxide”, Battery Bimonthly, 26, 118 (1996).
    [55] Douglas D. Perrin and E. Hogfeldt, “Stability constants of metal ion complexes”, 2nd ed., Chemical Society (1979).
    [56] Zhang Duomo, Zeng Qingxue, Liu Zhihong, Ge Rongde, and Chen Huiguang, “Preparation of high-density, high-activity, and spherical nickel hydroxide”, Chinese J. Power Sources, 21, 65 (1997).
    [57] Liu Shouchang, Wang Landian, Dong Quanfeng, and Xu Jinmu, “Studies on cathode material Ni(OH)2”, Chinese J. Power Sources, 19, 28 (1995).
    [58] Frederick P. Kober, “Analysis of the charge-discharge characteristics of nickel-oxide electrodes by infrared spectroscopy”, J. Electrochem. Soc., 112, 1064 (1965).
    [59] James McBreen, Nickel hydroxides, in Handbook of Battery Materials, Jurgen O. Besenhard, 1st edition, p.135, Wiley-VCH, New York (1999).
    [60] C. Faure and C. Delmas, “Characterization of a turbostratic a-nickel hydroxide quantitatively obtained from an NiSO4 solution”, J. Power Sources, 35, 279 (1991).
    [61] B. Mani and J. P. de Neufville, “Dehydration of chemically and electrochemical impregnated (CI and EI) nickel hydroxide electrode”, J. Electrochem. Soc., 135, 800 (1988).
    [62] Tadashi Ise, Tetsuyuki Murata, Yohei Hirota, Mitsuzo Nogami, and Shinsuke Nakahori, “The effect of particle size on the electro-chemical properties of hydrogen absorbing alloy electrodes”, J. Alloys and Compounds, 298, 310 (2000).
    [63] Margaret A. Reid and Patricia L. Loyselle, “Impedances of nickel electrodes cycled in various KOH concentrations”, J. Power Sources, 36, 285 (1991).
    [64] R. S. Schrebler, J. R. Vilche, and A. J. Arivia, “Rate process related to the htdrate nickel hydroxide electrode in alkaline solutions”, J. Electrochem. Soc., 1578 (1978).
    [65] F. Lichtenberg and K. Kleinsorgen, “Stability enhancement of the CoOOH conductive network of nickel hydroxide electrodes”, J. Power Sources, 62, 207 (1996).
    [66] D. A. Corrinan and R. M. Bendert, “Effect of co-precipitated metal ions on the electrochemistry of nickel hydroxide thin films: Cyclic Voltammetry in 1 M KOH”, J. Electrochem. Soc., 136, 723 (1989).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE