研究生: |
吳宗憲 Wu, Tsung-Hsien |
---|---|
論文名稱: |
應用於診斷類風溼性關節炎之雙目標物微流體平台 A dual-target microfluidic platform for diagnosis of rheumatoid arthritis |
指導教授: |
李國賓
Lee, Gwo-Bin |
口試委員: |
張晃猷
Chang, Hwan-You 李炫昇 Lee, Mel S. |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 53 |
中文關鍵詞: | 微流體 、類風溼性關節炎 、抗環瓜氨酸肽抗體 、類風溼因子 、酵素結合免疫吸附分析法 |
外文關鍵詞: | Microfluidics, Rheumatoid arthritis, Rheumatoid factors, Anti-cyclic citrullinated peptide, Enzyme-linked immunosorbent assay |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在早期階段檢測類風濕性因子和抗環瓜氨酸肽抗體已被證明能有效預防和追縱類風濕性關節炎的發展以減少對關節的不可逆損害。然而,現有的方法往往只檢測單一目標,所以無法有效地提供準確的診斷信息。此外,它們是相對冗長(約90分鐘)、勞動密集型和昂貴的過程。因此,迫切需要一種新的方法來解決上述問題。在此,我們建立了一種在自動微流體平台上進行雙目標檢測的新方法。所開發的微流體晶片(45 mm x 62 mm)具有對稱設計的特點,可以在並行工作流程中同時進行雙目標檢測;它還具有自動化的優勢,可以減少人為錯誤。在這項研究中,通過使用表面塗有免疫球蛋白 G結晶片段和生物素化環瓜氨酸肽的磁珠,分別捕獲了兩種類風濕性關節炎的生物標誌物,類風濕性因子和抗環瓜氨酸肽抗體。在免疫磁性捕獲後,可經由測量螢光強度同時量化雙目標物的濃度。雙目標物(類風濕性因子和抗環瓜氨酸肽抗體)檢測能在 55 分鐘內以自動化方式完成,同時在消耗更少的樣品(5 µL)和試劑的條件下進行類風濕性關節炎的準確診斷。本研究說明了針對類風濕性關節炎中類風濕性因子和抗環瓜氨酸肽抗體的快速雙重檢測、更快、緊湊、靈敏的測量,為醫生提供有用和全面的診斷信息,以促進了類風濕性關節炎的準確診斷,從而改善了類風濕性關節炎的治療。
Detecting rheumatoid factor (RF) and cyclic citrullinated peptide antibodies (anti-CCP) at an early stage has been proven to be effective in preventing and tracking the development of rheumatoid arthritis (RA) and decreasing irreversible damage to joints. However, the existing methods often only detect a single target so accurate diagnostic information cannot be provided efficiently. Furthermore, they are relatively lengthy (about 90 min), labor-intensive, and expensive processes. A new approach to solve the above-mentioned issues is therefore of great need. Herein, a new approach of dual-target detection on an automated microfluidic platform was established. The developed microfluidic chip (45 mm x 62 mm) featured a symmetrical design that allows simultaneous dual-target detection with a parallel workflow; it also offers the advantage of automation to reduce human errors. In this study, two RA biomarkers, RF and anti-CCP, were respectively captured by using magnetic beads surface-coated with the fragment-crystallizable region of immunoglobulin G and biotinylated CCP. Following immunomagnetic capture, the fluorescence intensities were measured and the amounts of RF and anti-CCP were quantified simultaneously. Therefore, the dual-target (i.e. RF and anti-CCP) detection was carried out within 55 min and an accurate diagnosis of RA in an automatic format while consuming fewer samples (5 L) and reagents. The present work illustrates rapid dual-detection, faster, compact, and sensitive measurement of RF and anti-CCP in RA, providing physicians with useful and comprehensive diagnostic information to facilitate accurate RA diagnosis and thus improve RA treatment.
1 D. J. Bishop, C. R. Giles, G. P. Austin, The Lucent LambdaRouter: MEMS technology of the future here today, IEEE Communications Magazine, 2002, 40, 75-79
2 J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field, Applied Physics Letters, 1997, 70, 2658-2660
3 R. Bogue, Recent developments in MEMS sensors: a review of applications, markets and technologies, Sensor Review, 2013, 33, 300-304
4 Y. Hanein, Y. V. Pan, B. D. Ratner, D. D. Denton, K. F. Böhringer, Micromachining of non-fouling coatings for bio-MEMS applications, Sensors and Actuators B: Chemical, 2001, 81, 49-54
5 L. A. V. Mendoza, N. A. Scilletta, M. G. Bellino, M. F. Desimone, P. N. Catalano, Recent Advances in Micro-Electro-Mechanical Devices for Controlled Drug Release Applications, Frontiers in Bioengineering and Biotechnology, 2020, 8, 1-28
6 T. Vilkner, D. Janasek, A. Manz, Micro Total Analysis Systems. Recent Developments, Analytical Chemistry, 2004, 76, 3373-3386
7 M. J. Heller, DNA Microarray Techology: Devices, Systems, and Applications, Annual Review of Biomedical Engineering, 2002, 4, 129-153
8 I. B. McInnes, G. Schett, The Pathogenesis of Rheumatoid Arthritis, The New England Journal of Medicine, 2011, 365, 2205-2219.
9 Y. Alamanos, A. A. Drosos, Epidemiology of adult rheumatoid arthritis, Autoimmunity Reviews, 2005, 4, 130-136
10 G. S. Firestein, Evolving concepts of rheumatoid arthritis, Nature, 2003, 423, 356-361
11 D. Kim, C. B. Choi, J. Lee, S. K. Cho, S. Won, S. Y. Bang, H. S. Cha, J. Y. Choe, W. T. Chung, S. J. Hong, J. B. Jun, Y. O. Jung, J. Kim, S. K. Kim, T. H. Kim, T. J. Kim, E. Koh, H. S. Lee, J. Lee, J. Lee, S. H. Lee, S. S. Lee10, S. W. Lee, S. C. Shim, D. H. Yoo, B. Y. Yoon, Y. K. Sung, S. C. Bae, and for the KORONA investigators, Impact of early diagnosis on functional disability in rheumatoid arthritis, The Korean Journal of Internal Medicine, 2017, 32, 738-746
12 S. R. Dahlqvist, F. Andrade, Individuals at risk of seropositive rheumatoid arthritis: the evolving story, Jounral of Internal Medicine, 2019, 286, 627-643
13 P. K. Gregersen, M. Shen, Q. L. Song, P. Merryman, S. Degar, T. Seki, J. Maccari, D. Goldberg, H. Murphy, J. Schwenzer, C. Y. Wang, R. J. Winchester, G. T. Nepom, J. Silver, Molecular diversity of HLA-DR4 haplotypes, Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 2642-2646
14 K. Aho, T. Palosuo, V. Raunio, P. Puska, A. Aromaa, J. T. Salonen, When does rheumatoid disease start?, Arthritis Rheumatism, 1985, 28, 485-489
15 S. R. Dahlqvist, B. A. W. d. Jong, E. Berglin, G. Hallmans, G. Wadell, H. Stenlund U. Sundin, W. J. V. Venrooij, Antibodies Against Cyclic Citrullinated Peptide and IgA Rheumatoid Factor Predict the Development of Rheumatoid Arthritis, Arthritis Rheumatism, 2003, 48, 2741-2749
16 K. Aho, R. V. Essen, P. Kurki, T. Palosuo, M. Heliövaara, Antikeratin antibody and antiperinuclear factor as markers for subclinical rheumatoid disease process, The Journal of Rheumatology, 1993, 20, 1278-1281
17 K. Sato, A. Suematsu, K. Okamoto, A. Yamaguchi, Y. Morishita, Y. Kadono S. Tanaka, T. Kodama, S. Akira, Y. Iwakura, D. J. Cua, H. Takayanagi, Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction, Journal of Experimental Medicine, 2006, 203, 2673-2682
18 S. Bas, T. V. Perneger, M. Seitz, J. M. Tiercy, P. R. Lombard, P. A. Guerne, Diagnostic tests for rheumatoid arthritis: comparison of anti-cyclic citrullinated peptide antibodies, anti-keratin antibodies and IgM rheumatoid factors, Rheumatology, 2002, 41, 809-814
19 A. J. Slotys, J. S. Axford, B. J. Sutton, Rheumatoid factors: where are we now?, Annals of the Rheumatic Diseases, 1997, 56, 281-286
20 W. J. V. Venrooij, J. J. B. C. V. Beers, G. J. M. Pruijn, Anti-CCP antibodies: the past, the present and the future, Nature Reviews Rheumatology, 2011, 7, 391-398
21 D. Aletaha, T. Neogi, A. J. Silman, J. Funovits, D. T. Felson, C. O. Bingham, III N. S. Birnbaum, G. R. Burmester, V. P. Bykerk, M. D. Cohen, B. Combe, K. H. Costenbader, M. Dougados, P. Emery, G. Ferraccioli, J. M. W. Hazes, K. Hobbs, T. W. J. Huizinga, A. Kavanaugh, J. Kay, T. K. Kvien, T. Laing, P. Mease, H. A. Ménard, L. W. Moreland, R. L. Naden, T. Pincus, J. S. Smolen, E. Stanislawska-Biernat, D. Symmons, P. P. Tak, K. S. Upchurch, J. Vencovsky´, F. Wolfe, G. Hawker, 2010 Rheumatoid Arthritis Classification Criteria: An American College of Rheumatology/European League Against Rheumatism Collaborative Initiative, Arthritis Rheumatism, 2010, 62, 2569-2581
22 M. A.M. V. Delft, T. W. J. Huizinga, An overview of autoantibodies in rheumatoid arthritis, Journal of Autoimmunity, 2020, 110, 102392
23 L. V. Hoovels, J. Jacobs, B. V. Cruyssen, S. V. d. Bremt, P. Verschueren, X. Bossuyt, Performance characteristics of rheumatoid factor and anti-cyclic citrullinated peptide antibody assays may impact ACR/EULAR classification of rheumatoid arthritis, Annals of the Rheumatic diseases, 2018, 77, 667-677
24 A. Mobed, S. Dolati, S. K. Shakouri, B. Eftekharsadat, B. Izadseresht, Recent advances in biosensors for detection of osteoarthritis and rheumatoid arthritis biomarkers, Sensors and Actuators A: Physical, 2021, 331, 112975
25 B. Veigas, A. Matias, T. Calmeiro, E. Fortunato, A. R. Fernandesa, P. V. Baptista, Antibody modified gold nanoparticles for fast colorimetric screening of rheumatoid arthritis, Analyst, 2019, 144 , 3613-3619
26 S. R. Chinnadayyala, J. Parka, M. A. Abbasia, S. Cho, Label-free electrochemical impedimetric immunosensor for sensitive detection of IgM rheumatoid factor in human serum, Biosensors and Bioelectronics, 2019, 143, 111642
27 C. Y. Lin, U. T. N. Nguyen, H. Y. Hsieh, H. Tahara, Y. S. Chang, B. Y. Wang, B. C. Gu, Y. H. Dai, C. C. Wu, I. J. Tsai, Y. J. Fan, Peptide-based electrochemical sensor with nanogold enhancement for detecting rheumatoid arthritis, Talanta, 2022, 236, 122886
28 M. Puiu, C. Bala, Peptide-based biosensors: From self-assembled interfaces to molecular probes in electrochemical assays, Bioelectrochemistry, 2018, 120, 66-75
29 S. Guerrero, E. S. Tirado, G. M. García, A. G. Cortés, P. Y. Sedeño, J. M. Pingarrón, Electrochemical biosensor for the simultaneous determination of rheumatoid factor and anti-cyclic citrullinated peptide antibodies in human serum, Analyst, 2020, 145, 4680-4687
30 V. C. Romao, S. A. M. Martins, J. Germano, F. A. Cardoso, S. Cardoso, P. P. Freitas, Lab-on-Chip Devices: Gaining Ground Losing Size, ACS nano, 2017, 11, 10659-10664
31 K. C. Ramos, M. D. P. C. Macías, Microdevice immunoassay with conjugated magnetic nanoparticles for rapid anti-cyclic citrullinated peptide (anti-CCP) detection, Talanta, 2021, 224, 121801
32 W. Stephenson, L. T. Donlin, A. Butler, C. Rozo, B. Bracken, A. Rashidfarrokhi, S. M. Goodman, L. B. Ivashkiv, V. P. Bykerk, D. E. Orange, R. B. Darnell, H. P. Swerdlow, R. Satija, Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumentation, Nature Communications, 2018, 9, 791-801
33 K. Pappa, E. Holcze, C. K. Nagyc, Z. Szittner, V. Lorand, P. Roveroe, J. Prechl, P. Fürjes, Multiplex determination of antigen specific antibodies with cell binding capability in a self-driven microfluidic system, Sensors and Actuators B: Chemical, 2017, 238, 1092-1097
34 Q. M. Cao, Y. F. Wang, Y. Y. Jing, Clinical Significance of Combined Anti-Cyclic Citrullinated Peptide Antibody and Rheumatoid Factor Assays in Rheumatoid Arthritis Diagnosis, Archives of Rheumatology, 2015, 30, 104-108
35 P. Y. Chang, C. T. Yang, C. H. Cheng, K. H. Yu, Diagnostic performance of anti-cyclic citrullinated peptide and rheumatoid factor in patients with rheumatoid arthritis, International Journal of Rheumatic Diseases, 2016, 19, 880-886
36 H. C. Tekin, M. A. M. Gijs, Ultrasensitive protein detection: a case for microfluidic magnetic bead-based assays, Lab on a chip, 2013, 13, 4711-4739
37 P. C. Weber, D. H. Ohlendorf, J. J. Wendoloski, F. R. Salemme, Structural Origins of High-Affinity Biotin Binding to Streptavidin, Science, 1989, 243, 85-88
38 C. H. Weng, K. Y. Lien, S. Y.Yang, G. B. Lee, A suction-type, pneumatic microfluidic device for liquid transport and mixing, Microfluidics and Nanofluidics, 2011, 10, 301-310
39 D. Erickson, D. Li, Influence of Surface Heterogeneity on Electrokinetically Driven Microfluidic Mixing, Langmuir, 2002, 18, 1883-1892
40 S. Y. Yang, J. L. Lin, G. B. Lee, A vortex-type micromixer utilizing pneumatically driven membranes, Journal of Micromechanics and Microengineering, 2009, 19, 035020
41 J. T. Busher, Serum Albumin and Globulin, In: Walker HK, Hall WD, Hurst JW, editors. Clinical Methods: The History, Physical, and Laboratory Examinations. 3rd ed. Boston: Butterworths; 1990. Chapter 101. PMID: 21250048.
42 J. M. Bland, D. G. Altman, Measuring agreement in method comparison studies, Statistical Methods in Medical Research, 1999, 8, 135-160
43 H. Passing, W. Bablok, A new biometrical procedure for testing the equality of measurements from two different analytical methods, Journal of clinical chemistry and clinical biochemistry, 1983, 21 , 709-720