研究生: |
珍妮佛 Betty Marie Jennifer S.Paulose |
---|---|
論文名稱: |
高亮度磷光新穎銥金屬錯合物□合成探究以及有機發光二極體應用 Highly Phosphorescent Novel Iridium Complexes; Synthesis Characterization and Application in OLEDs |
指導教授: |
鄭建鴻
Chien-Hong Cheng |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2005 |
畢業學年度: | 94 |
語文別: | 英文 |
中文關鍵詞: | 烯基吡啶 、銥 、電致放光 |
外文關鍵詞: | alkenyl pyridines, iridium, OLED |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文是介紹了一些新穎銥金屬錯合物的合成,以及它們的物理性質、電化學性質、及電致發光性質上的研究。最主要分成了三個章節。第二章為烯基吡啶配位銥金屬錯合物的合成,第三章為硫氮二烯伍圜配位基及奎林配位基銥金屬錯合物的合成,第四章則在探討這些錯合物特殊的性質。
烯基吡啶配位基是分別利用Stille coupling, Mizoroki-Heck 反應及威悌反應所合成。反式異構物再和帶有結晶水的三氯化銥反應得到雙體錯化物。這些雙體錯化物再和乙醯丙酮反應可以得到具有發光性質的單體錯合物。另人意外的是,利用順式異構物或者混合的順反異構物亦可進行環金屬化反應。這類的錯合物的放光相對於類似的芳香化合物,有紅位移的現象。而當在吡啶或苯環的對位上引進推、拉電子基時,對放光波長並無太大的改變。第三章則整理了這些錯合物的光致放光及電致放光的性質。
ABSTRACT
This thesis reports on the synthesis of novel iridium complexes and the photophysical, electrochemical and electroluminescent studies based on them. The details are presented in three chapters. Chapter 2 explains the synthesis of alkenyl pyridine based iridium complexes. In Chapter 3, iridium complexes synthesized based on thiazoles and quinolines are discussed. In Chapter 4, complexes with unusual properties are discussed.
Various alkenyl pyridines were synthesized by Stille coupling, Mizoroki-Heck reaction and Wittig reactions. The trans isomers were treated with IrCl3.nH2O to get the binuclear complexes. The binuclear complexes were then converted to emissive mono nuclear acetyl acetonate complexes by reported methods. Surprisingly cis or a mixture of cis and trans isomer was also found to undergo cyclometalation. These complexes exhibit red shifted emission compared to their aromatic analogues. The emission wavelength does not alter much when electron withdrawing or donating groups are substituted on the pyridine ring or the para position to the phenyl ring. Chapter 3 explains the detailed synthetic photoluminescent and electroluminescent studies of alkenyl pyridine based complexes.
Various alkenyl thiazoles and alkenyl quinolines were synthesized by Stille coupling and Wittig reactions. They were conveniently converted to the corresponding metal complexes by following previous reported methods. A red shifted emission was observed for the alkenyl quinolines based iridium complexes. In Chapter 3, the details of the photophysical and electroluminescent properties of these complexes are explained. The devices based on (PEQ)2Ir(acac) as dopant showed excellent red emission with CIE values (0.66,0.33).
Compounds discussed in Chapter 4 show abnormal photophysical and electroluminescent properties. These ligands were synthesized by Wittig reactions. The ligands were treated with IrCl3.nH2O and then with acetyl acetone to give final iridium complexes. These complexes are weakly luminescent or non luminescent in solution and extremely luminescent in solid state. They show good to excellent device properties when they were used as dopants in devices. The devices based on (MPP)2Ir(acac) and (PPP)2Ir(acac) showed excellent device performance when used as dopants. A detailed explanation about these compounds is discussed in Chapter 4.
Newly designed ligands were synthesized to get efficient photoluminescent and electroluminescent iridium complexes. The complexes are highly luminescent in solid state. Chapter 4 also explains about the attempted synthesis of platinum complexes using these ligands. Two complexes (PEP)Pt(acac) and (PEQ)Pt(acac) were synthesized using ligands PEP and PEQ. These complexes are highly luminescent in solid state.
(1) Herschel, Sir J. F. W., On a case of superficial colour presented by a homogenous liquid internally colourless, Phil. Trans. R. Soc. London 1845, 135: 143.
(2) Pope, M.; Kallmann H. P.; Magnante P. J Chem. Phys. 1963, 38, 2042.
(3) Partridge, R. H. Polymer 1983, 24, 733.
(4) Vincett, P. S.; Barlow W. A.; Hann, R. A.; Roberts, G. G. Thin Solid Films 1982, 94, 171.
(5) Roberts, G. G.; McGinnity, W. A.; Barlow W. A.; Vincett, P. S. Solid State Commun. 1979, 32, 683.
(6) Hyashi, S.; Etoh, H. Saito, S. Jpn. J. Appl. Phys. 1986, 25, L773.
(7) Choong, V. E.; Shen, J.; Curless, J.; Shi, S.; Yang, J.; So, F. J.Phys. D: Appl. Phys. 2000, 33, 760.
(8) Tang, C. W.; Van slyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
(9) Tang, C. W.; Van slyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610.
(10) Mori, T.; Miyachi, K.; Mizutani, T. J.Phys. D: Appl. Phys. 1995, 28, 1461.
(11) Adachi, C.; Tokito, S.; Tsutsui, T.; Saito, S. Jpn. J. Appl. Phys. 1988, 27, L269.
(12) Holder, E.; Langeveld, B. M. W.; Schubert, U. S. Adv. Mater. 2005, 17, 1109.
(13) Grätzel, M. Nature 2001, 414, 338.
(14) Adachi, C.; Baldo, M. A.; Forrest, S. R.; Thompson, M. E. Appl. Phys. Lett. 2000, 77, 6904.
(15) Gao, F. G.; Bard, A. J. Chem. Mater. 2002, 14, 3465.
(16) Gao, F. G.; Bard, A. J. J. Am. Chem. Soc. 2000, 122, 7426.
(17) Handy, E. S.; Pal, A. J.; Rubner, M. F. J. Am. Chem. Soc. 1999, 121, 3525.
(18) Zu, Y.; Bard, A. J. Anal. Chem. 2001, 73, 3960.
(19) Lee, J. K.; Yoo, D.; Rubner, M. F. Chem. Mater. 1997, 9, 1710.
(20) Amao, Y.; Ishikawa, Y.; Okura, I. Anal. Chim. Acta. 2001, 445, 177.
(21) Zakeeruddin, S. M.; Fraser, D. M.; Nazeeruddin, M. K.; Grätzel, M. J. Electroanal. Chem. 1993, 337, 2536.
(22) Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Kwong, R.; Tsyba, I.; Bortz, M.; Mui, B.; Bau, R.; Thompson, M. E. Inorg. Chem. 2001, 40, 1704.
(23) King, K, A.; Spellane, P. J.; Watts, R. J. J. Am.Chem. Soc. 1985, 107, 1432.
(24) Colombo, M. G.; Hauser, A.; Gudel, H. U. Inorg. Chem. 1993, 32, 3088.
(25) Baldo, M. A.; O’Brien, D. F.; Bulovic, V.; Thompson, M. E.; Forrest S. R. Appl. Phys. Lett. 1999, 75, 4.
(26) Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. J. Appl. Phys. 2001, 90, 5048.
(27) Adachi, C.; Baldo, M. A.; Forrest, S. R.; Lamansky, S.; Thompson, M. E.; Kwong, R. C. Appl. Phys. Lett. 2001, 78, 1622.
(28) Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson M. E. J. Am. Chem. Soc. 2001, 123, 4304.
(29) Baldo, M. A.; O’Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 151.
(30) Baldo, M. A.; O’Brien, D. F.; Thompson, M. E.; Forrest, S. R. Phys.Rev. B. 1999, 60, 14422.
(31) Adachi, C.; Baldo, M. A.; Forrest, S. R.; Thompson, M. E. Appl. Phys. Lett. 2000, 78, 1704.
(32) Lakowicz, J. R. Principles of Fluorescence Spectroscopy. Kluwer: New York, 1999.
(33) Wilde, A. P.; King, K. A.; Watts, R. J. J. Phys. Chem. 1991, 95, 629.
(34) Tamayo, A. B.; Alleyne, B. D.; Djurovich, P.; Lamansky, S.; Tsyba, I.; Ho, N. N.; Bau, R.; Thompson, M. E. J. Am. Chem. Soc. 2003, 125, 7377
(35) Tsuboyama, A.; Iwawaki, H.; Furugori, M.; Mukaide, T.; Kamatani, J.; Igawa, S.; Moriyama, T.; Miura, S.; Takiguchi, T.; Okada, S.; Hoshino, M.; Ueno, K. J. Am. Chem. Soc. 2003, 125, 12 971.
(36) Duan, J. P.; Sun, P. P.; Cheng, C. H. Adv. Mater. 2003, 15, 224.
(37) Su, Y. J.; Huang, H. L.; Li, C. L.; Chien, C. H.; Tao, Y. T.; Chou, P. T.; Datta, S.; Liu, R. S. Adv. Mater. 2003, 15, 884.
(38) Lu, W.; Mi, B. X.; C. W. Chan, M. C. W.; Hui, Z.; Che, C.M.; Zhu, N.; Lee, S. T. J. Am. Chem. Soc. 2004, 126, 4958.
(39) Slinker, J. D.; Gorodetsky, A. A.; Lowry, M. S.; Wang, J.; Parker, S.; Rohl, R.; Bernhard, S.; Malliaras, G. G. J. Am. Chem. Soc. 2004, 126, 2763.
(40) a) Labadie, J. W.; Tueting, D.; Stille, J. K. J. Org. Chem. 1983, 48, 4634. b) Lappert, M. F.; Jones, K. J. Organomet. Chem. 1965, 3, 295
(41) Huang, C. W.; Shanmugasundaram, M.; Chang, H. M.; Cheng, C. H. Tetrahedron 2003, 59, 3635.
(42) Poulter, C. D.; Muehlbacher, M.; Davis, D. R.J. Am. Chem. Soc. 1989, 111, 3740.
(43) Ghosh, A. K.; Mukhopadhyay, C.; Ghatak, U. R. J. Chem. Soc., Perkin Trans. 1, 1994, 327
(44) Cummings, S. D.; Eisenberg, R. J. Am. Chem. Soc. 1996, 118, 1949.
(45) Gagnè, R. R.; Koval, C. A.; Lisensky, G. C. Inorg. Chem. 1980, 19, 2854.
(46) Zhang, H.; Kwong, F. Y.; Tian, Y.; Chan, K. S. J. Org. Chem. 1998, 63, 6886.