研究生: |
梁家綺 Jia-Qi Liang |
---|---|
論文名稱: |
三氧化二鐵奈米線之氧缺陷濃度及其特性研究 Characterization of Iron Oxide Nanowires with Oxygen Vacancies Tuning |
指導教授: |
周立人
Li-Jen Chou |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 82 |
中文關鍵詞: | 三氧化二鐵 、氧缺陷 、氧化鐵 |
外文關鍵詞: | Fe2O3, oxygen vacacies, Iron oxide |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
在本實驗中,我們利用三區爐管藉由尖端成長機制在鐵鎳合金上成長三氧化二鐵之奈米線,主要研究不同溫度成長之三氧化二鐵奈米線氧缺陷的變化及其相關性質分析。
我們分別在350℃、400℃、450℃、500℃、550℃及 600℃成長三氧化二鐵奈米線。經由穿透式電子顯微鏡的分析,研究其三氧化二鐵結構中氧缺陷,我們發現在450℃以上至600℃成長之奈米線會存在長程序化的缺陷,其週期為10層(3-30)的平面。而當成長溫度降至400℃時,奈米線中長程序化的缺陷週期降到6層,有缺陷濃度增加的趨勢。不過當溫度低於350℃時,此現象會傾向消失。
在成長三氧化二鐵奈米線的過程中,因為處於稀少氧的氣氛下,且鐵是從基板藉由表面擴散與內部擴散至頂端與氛圍中的氧結合,再加上在三氧化二鐵中形成氧缺陷的能量會低於鐵缺陷,因此我們推斷三氧化二鐵中的長程序化缺陷為氧缺陷所構成,且氧缺陷含量會隨成長溫度變低而增加,此推斷可藉由EDS與EELS分析證明。此外,經由五種氧缺陷在金剛砂結構中擴散機制比較,我們推測氧缺陷容易存在於八偶體的邊界,再以此推測進行模擬,結果與HETEM影像一致。
此外,比較有趣的是三氧化二鐵的磁性質會不會受到養缺陷含量的影響,因此我們分別對350℃、500℃與600℃成長之三氧化二鐵奈米線,做加場冷卻與不加場冷卻之磁化量與溫度之關係研究。場發射性質方面,我們量測不同成長溫度之試片與不同量測距離對三氧化二鐵奈米線之場發射性質影響。
Abstract
This thesis is mainly focused on the various oxygen vacancies density in the Fe2O3 nanowires and related measurements at magnetic and field-emission behaviors where the Fe2O3 nanowires are synthesized from Fe-Ni alloy substrate via tip-growth mechanism in three zone furnace.
The Fe2O3 nanowires are grown at different temperatures of 350, 400, 500, 550, and 600 ℃, respectively. Subsequently, all the nanowires are examined by TEM in order to systematically discuss the oxygen vacancies inside the Fe2O3 nanowires. The long rang ordering phenomenon can be found inside the Fe2O3 nanowires at growth temperature above 450 to 600 ℃ whose periodic length is ten time of (3,-3,0) plane by investigated the high resolution TEM in detail whereas the periodic length is decreased from ten to six times of (3,-3,0) planes as the growth temperature is decreased to 400 ℃, indicating that the density of oxygen ordering inside the Fe2O3 is increased. However, this ordering phenomenon will disappear when the growth temperature is below 350 ℃.
On the other hand, we expect that the finding at ordering phenomenon inside the Fe2O3 is caused by oxygen vacancies owing to two factors. Fist, the iron cations can be enforced to diffuse from alloy substrate to react with oxygen atom by surface and internal diffusion during the growth of Fe2O3 nanowries in which the whole growth are suffered an oxygen deficient ambient. Second, the formation of energy for oxygen vacancies is smaller than that of the iron vacancies. In addition, it is found that the density of oxygen vacancies is increased as the synthesized temperature is decreased, which is proved by measurements of energy dispersive spectrum (EDS) and electron energy loss spectrometry (EELS). The similar results regarding the oxygen vacancies are found in Al2O3 (Corundum) materials where the five kinds of oxygen vacancies migration mechanisms are proposed. As the result, by comparing with the five kinds of oxygen vacancies migration mechanisms inside the Al2O3 and atomic simulation, the oxygen vacancies is suggested to be easily existed at the coordinated corner of octahedron, which is consistent with results found at the high resolution TEM as well.
Besides, it is of interesting that the different oxygen deficiencies inside the Fe2O3 nanowres caused by different synthesized temperature may influence the magnetic properties. Herein, the magnetic properties are investigated at measurements of field-cooling and zero field-cooling, namely, magnetization as the function of the different temperature without and with magnetic field, for two kinds of deficiencies inside the Fe2O3 nanowires synthesized at temperature of 350, 500 and 600 ℃, respectively. For the field-emission properties, current density as the function of the different applied voltage at the different synthesized temperatures and different measured distance between surface of nanowires and anode are measured and discussed systematically.
Reference
[01] Sumio Iijima
“Helical Microtube of Graphitic Carbon”
Nature, 354, p56-58 (1991)
[02] Younan Xia, Peidong Yang, Yugang Sun, Yiying Wu, Brian Mayers, Byron Gates, Yadong Yin, Franklin Kim, and Haoquan Yan
“One-Dimensional Nanostructures: Synthesis, Characterization, and Applications”
Adv. Mater., 15, p353-389 (2003)
[03] Philip G. Collins, A. Zettl, Hiroshi Bando, Andreas Thess, and R. E. Smalley
“Nanotube Nanodevice”
Science, 278, p100-103 (1997)
[04] David H. Cobden,
“Nanowires Begin To Shine”
Nature, 409, p32-33 (2001)
[05] Wenjie Liang, Marc Bockrath, Dolores Bozovic, Jason H. Hafner, M. Tinkham, and Hongkun Park
“Fabry-Perot interference in a nanotube electron waveguide”
Nature, 411, p665-669 (2001)
[06] Xiangfeng Duan, Yu Huang, Yi Cui, Jianfang Wang, and Charles M Lieber
“Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices”
Nature, 409, p66-69 (2001)
[07] Yunyi Fu, Jing Chen, and Han Zhang
“Synthesis of Fe2O3 nanowires by oxidation of iron”
Chemical Physics Letters, 350, p491–494 (2001)
[08] Suoyuan Lian, Enbo Wang, Zhenhui Kang, Yunpeng Bai, Lei Gao, Min Jiang, Changwen Hu, and Lin Xu
“Synthesis of magnetite nanorods and porous hematite nanorods”
Solid State Communications, 129, p485–490 (2004)
[09] Xiaogang Wen, Suhua Wang, Yong Ding, Zhong Lin Wang, and Shihe Yang
“Controlled Growth of Large-Area, Uniform, Vertically Aligned Arrays of α-Fe2O3 Nanobelts and Nanowires”
J. Phys. Chem. B, 109, p215-220 (2005)
[10] Zeheng Yang, Yunle Gu, Luyang Chen, Liang Shi, Jianhua Ma, Yitai Qian
“Preparation of Mn5Si3 nanocages and nanotubes by molten salt flux”
Solid State Communications, 130, p347–351 (2004)
[11] Li Yang, Xing Zhang, Ru Huang, Guoyan Zhang, and Xia An
“Synthesis of single crystalline GaN nanoribbons on sapphire (0001) substrates”
Solid State Communications, 130, p769–772 (2004)
[12] Chun-Jiang Jia, Ling-Dong Sun, Zheng-Guang Yan, Li-Ping You, Feng Luo, Xiao-Dong Han, Yu-Cheng Pang, Ze Zhang, and Chun-Hua Yan
“Single-Crystalline Iron Oxide Nanotubes”
Angew. Chem. Int. Ed., 44, p4328 –4333 (2005)
[13] Mark S. Gudiksen, Lincoln J. Lauhon, Jianfang Wang, David C. Smith and Charles M. Lieber
“Growth of nanowire superlattice structures for nanoscale photonics and electronics”
Nature, 415, p617-620 (2002)
[14] Philip G Collins and Phaedon Avouris
“Nanotubes for electronics”
Scientific American, 283(6), p62-69 (2000)
[15] Vincenzo Balzani, Alberto Credi, and Margherita Venturi
“The Bottom-Up Approach to Molecular-Level Devices and Machines”
Chem. Eur. J., 8, p5524-5532 (2002)
[16] R. S. Wagner, and W. C. Ellis
“Vapor-Solid-Liquid Mechanism of single crystal Growth”
Appl. Phys. Lett., 4, p89-90 (1964)
[17] J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, and H. Ruda
“Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction”
J. Vac. Sci. Technol. B, 15(3), p554-557 (1997)
[18] Alfredo M. Morales and Charles M Lieber
“A laser ablation method for the synthesis of crystalline semiconductor nanowires”
Science, 279, p208-211 (1998)
[19] Xiangfeng Duan and Charles M. Lieber
“General Synthesis of Compound Semiconductor Nanowires”
Adv. Mater., 12, p298-302 (2000)
[20] Jun Zhang, Feihong Jiang, Yongdong Yang, and Jianping Li
“Catalyst-Assisted Vapor-Liquid-Solid Growth of Single-Crystal Ga2O3 Nanobelts”
J. Phys. Chem. B, 109, p13143-13147 (2005)
[21] Ko-Wei Chang and Jih-Jen Wu
“Low-Temperature Catalytic Synthesis of Gallium Nitride Nanowires”
J. Phys. Chem. B, 106, p7796-7799 (2002)
[22] Erik P. A. M. Bakkers and Marcel A. Verheijen
“Synthesis of InP Nanotubes”
J. Am. Chem. Soc., 125, p3440-3441 (2003)
[23] Yewu Wang, Lide Zhang, Changhao Liang, Guozhong Wang, and Xinsheng Peng
“Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires”
Chemical Physics Letters, 357, p314–318 (2002)
[24] X.C. Wu and Y.R. Tao
“Growth of CdS nanowires by physical vapor deposition”
Journal of Crystal Growth, 242, p309–312(2002)
[25] Xianghua Kong, Xiaoming Sun, Xiaolin Li, and Yadong Li
“Catalytic growth of ZnO nanotubes”
Materials Chemistry and Physics, 82, p997–1001 (2003)
[26] Heng Yu and William E. Buhro
“Solution-Liquid-solid Growth of Soluble GaAs Nanowires”
Adv. Mater., 15(5), p416-419 (2003)
[27] Trentler, Timothy J, Hickman, Kathleen M, Goel, Subhash C, and Viano, Ann M
“Solution-liquid-solid growth of crystalline III-V semiconductors: An analogy to vapor-liquid-solid growth”
Science, 270, p1791-1794 (1995)
[28] Justin D Holmes, Keith P Johnston, R Christopher Doty, and Brian A Korgel
“Control of thickness and orientation of solution-grown silicon nanowires”
Science, 287, p1471-1473 (2000)
[29] Xianmao Lu, Tobias Hanrath, Keith P. Johnston,* and Brian A. Korgel*
“Growth of Single Crystal Silicon Nanowires in Supercritical Solution from Tethered Gold Particles on a Silicon Substrate”
Nano Lett., 3, p93-99 (2003)
[30] Ki-Hong Lee, Seung-Woo Le, Richard R.Vanfleet, and Wolfgang Sigmund
“Amorphous silica nanowires grown by the vapor–solid mechanism”
Chemical Physics Letters, 376, p498–503 (2003)
[31] A. Umar, S.H. Kim, Y.-S. Lee, K.S. Nahm, Y.B. Hahn
“Catalyst-free large-quantity synthesis of ZnO nanorods by a vapor–solid growth mechanism: Structural and optical properties”
Journal of Crystal Growth, 282, p131–136 (2005)
[32] H.Z. Zhang, Y.C. Kong, Y.Z. Wang, X. Du, Z.G. Bai, J.J. Wang, D.P. Yu, Y. Ding, Q.L. Hang, and S.Q. Feng
“Ga2O3 nanowires prepared by physical evaporation”
Solid State Communications, 109, p677–682 (1999)
[33] Rui-Qin Zhang, Yeshayahu Lifshitz, and Shuit Tong Lee
“Oxide-Assisted Growth of Semiconduction Nanowires”
Adv. Mater., 15, p635-640 (2003)
[34] Y. F. Zhang, Y. H. Tang, N. Wang, C. S. Lee, I. Bello, and S. T. Lee
“Germanium nanowires sheathed with an oxide layer”
PHYSICAL REVIEW B, 61, p4518-4521 (2000)
[35] W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee
“Oxide-assisted growth and optical characterization of gallium-arsenide nanowires”
APPLIED PHYSICS LETTERS, 78, p3304-3306 (2001)
[36] Wensheng Shi, Yufeng Zheng, Ning Wang, Chun-Sing Lee, and Shuit-Tong Lee
“A General Synthetic Route to III-V Compound Semiconductor Nanowires”
Adv. Mater., 13, p591-594 (2001)
[37] R. M. Cornell and U. Schwertmann
“The Iron Oxides-structure, properties, reactions, occurrences and uses 2nd ed.”,
Wiley-VCH (2003)
[38] P. J. Spencer, and O. Kubaschewski,
“A THERMODYNAMIC ASSESSMENT OF THE IRON-OXYGEN SYSTEM”
CALPHAD, 2, p147-167 (1978)
[39] M. Catti, G. Valerio, and R. Dovesi
“Theoretical study of electronic, magnetic, and structural properties of α-Fe2O3 (hematite)”
Physical review B, 51, p7441-7450 (1995)
[40] R.D. Zysler, D. Fiorani, and A.M. Testa
“Investigation of magnetic properties of interacting Fe2O3 nanoparticles”,
J. Magnetism and Magnetic Materials, 224, p5-11 (2001)
[41] O.K. Tan, W. Cao, Y. Hu, and W. Zhu
“Nano-structured oxide semiconductor materials for gas-sensing applications”
Ceramics International, 30, p1127–1133 (2004)
[42] Y. W. Zhu, T. Yu, C. H. Sow, Y. J. Liu, A. T. S. Wee, X. J. Xu, C. T. Lim, and J. T. L. Thong
“Efficient field emission from α- Fe2O3 nanoflakes on an atomic force microscope tip”
APPLIED PHYSICS LETTERS, 87, 023103 (2005)
[43] Riitsu Takagi
“Growth of Oxide Whiskers on Metals at High Temperature”
J. Phys. Soc. Jap., 12, p1212-1218 (1957)
[44] D. A. Voss, E. P. Butler, and T. E. Mitchell
“The Growth of Hematite Blades during the High Temperature Oxidation of Iron”
Meta. Trans. A, 13, p929-935 (1982)
[45] I. Gaballah, S. El Raghy, and C. Gleitzer
“Oxidation kinetics of fayalite and growth of hematite whiskers”
J. Mater. Sci., 13, p1971-1976 (1978)
[46] Y.Y. Fu, R.M. Wang , J. Xu , J. Chen , Y. Yan , A.V. Narlikar , and H. Zhang, “Synthesis of large arrays of aligned α-Fe2O3 nanowires”
Chem. Phys. Let. 379, 373 (2003)
[47] M.T. Caldes, G. Goglio, C. Marhic, O. Joubert, M. Lancin, and L. Brohan
“Influence of synthesis method on the microstructure of Sr3-xLaxMn2O7: a combined HREM, EELS and X-ray study”
International Journal of Inorganic Materials, 3, p1169–1171 (2001)
[48] R. Genouel, C. Michel, and B. Raveau
“Powder Neutron Diffraction Study of the Ordered Oxygen-Deficient Perovskites (La,Sr)8Cu8-xFexO20”
Chem. Mater. 7, 2181-2184 (1995)
[49] M. James, T. Tedesco, D.J. Cassidy, and R.L. Withers
“Oxygen vacancy ordering in strontium doped rare earth cobaltate perovskites Ln1-xSrxCoO3-δ (Ln = La, Pr and Nd; x > 0.60)”
Materials Research Bulletin, 40, p990–1000 (2005)
[50] M. James, D. Cassidy, K.F. Wilsonc, J. Horvat, and R.L. Withers
“Oxygen vacancy ordering and magnetism in the rare earth stabilized perovskite form of “SrCoO3−δ”
Solid State Sciences, 6, p655–662 (2004)
[51] Alvaro W. Mombru, Christos Christides, Alexandros Lappas, Kosmas Prassides, M. Pissas, C. Mitros, and D. Niarchos
“Magnetic Structure of the Oxygen-Deficient Perovskite YBaCuFeO5+δ”
Inorg. Chem., 33, p1255-1258 (1994)
[52] Artem P. Malakho, Vladimir A. Morozov, Konstantin V. Pokholok, Bogdan I. Lazoryak, and Gustaaf Van Tendeloo
“Layered ordering of vacancies of lead iron phosphate Pb3Fe2(PO4)4”
Solid State Sciences, 7, p397-404 (2005)
[53] M. Terrones, N. Grobert, J. Olivares, J. P. Zhang, H. Terrones, K. Kordatos, W. K. Hsu, J. P. Hare, P. D. Townsend, K. Prassides, A. K. Cheetham, H. W. Kroto, and D. R. M. Walton
“Controlled production of aligned-nanotube bundles”
Nature, 388, p52-55 (1997)
[54] Wen-Sheng Shi, Hong-Ying Peng, Yu-Feng Zheng, Ning Wang, Nai-Gui Shang, Zhen-Wei Pan, Chun-Sing Lee, and Shuit-Tong Lee
“Synthesis of Large Areas of Highly Oriented, Very Long Silicon Nanowires”
Adv. Mater., 12(18), p1343-1345 (2000)
[55] R. Boistelle and J.P. Astier
“Crystallization mechanisms in solution”
Journal of Crystal Growth, 90, p14-30 (1988)
[56] M. Zinke-Allmang, L. C. Feldman, and S. Nakahara
“Role of Ostwald ripening in islanding processes”
Appl. Phys. Lett., 51(13), p975-977 (1987)
[57] E. I. Givargizov
“HIGHLY ANISOTROPIC CRYSTALS, 8th ed.”
Terra Scientific, Tokyo (1987)
[58] J.H. Zhu
“III.A.16 Developing Fe-Based Alloys for Intermediate-Temperature SOFC Interconnect Application”
Office of Fossil Energy Fuel Cell Program, p113-116 (FY 2005)
[59] Javier Carrasco, Jose R. B. Gomes, and Francesc Illas
“Theoretical study of bulk and surface oxygen and aluminum vacancies in α-Al2O3”
Physical Review B, 69, 067116 p1-13 (2004)
[60] Patrick W. M. Jacobs and Eugene A. Kotomin
“Modeling of Point Defects in Corundum Crystals”
Journal of the American Ceramic Society, 77, p2505-2508 (1994)
[61] Y.Y. Xu , X.F. Rui, Y.Y. Fu, and H. Zhang
“Magnetic properties of α-Fe2O3 nanowires”
Chemical Physics Letters, 410, p36–38(2005)
[62] N. Amin and Sigurds Arajs
“Morin temperature of annealed submicronic α-Fe2O3 particles”
Physical Review B, 35, p4810-4811 (1987)
[63] Frederick C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee
“Electron field emission from silicon nanowires”
APPLIED PHYSICS LETTERS,75, p1700-1702 (1999)
[64] Y. L. Chueh, L. J. Chou, S. L. Cheng, J. H. He, W. W. Wu, and L. J. Chen
“Synthesis of taperlike Si nanowires with strong field emission”
APPLIED PHYSICS LETTERS, 86, 133112, p1-3 (2005)
[65] Enrique R. Batista and Richard A. Friesner
“A Self-Consistent Charge-Embedding Methodology for ab Initio Quantum Chemical Cluster Modeling of Ionic Solids and Surfaces: Application to the (001) Surface of Hematite (α-Fe2O3)”
J. Phys. Chem. B, 106, p8136-8141 (2002)
[66] R. C. Smith, D. C. Cox, and S. R. P. Silva
“Electron field emission from a single carbon nanotube:Effects of anode location”
APPLIED PHYSICS LETTERS, 87, 103112, p1-3 (2005)
[67] C. Colliex, T. Manoubi, and C. Ortiz
“Electron-energy-loss-spectroscopy near-edge fine structures in the iron-oxygen system”
Physical Review B, 44, p11402-11411 (1991)
[68] F.M.F. de Groot, M. Grioni, J.C. Fuggle, J. Ghijsen, G.A. Sawatzky, and H. Petersen
“Oxygen 1s x-ray-absorption edges of transition-metal oxides”
Physical Review B, 40, p5715-5723 (1989)
[69] J. Jasinski , K.E. Pinkerton, I.M. Kennedy, and V.J. Leppert
“Surface oxidation state of combustion-synthesized γ-Fe2O3 nanoparticles determined by electron energy loss spectroscopy in the transmission electron microscope”
Sensors and Actuators B, 109, p19–23(2005)
[70] Zhong L. Wang, Jin S. Yin, Wei Dong Mo, and Z. John Zhang
“In-Situ Analysis of Valence Conversion in Transition Metal Oxides Using Electron Energy-Loss Spectroscopy”
The journal of physical chemistry B, 101, p6793-6798 (1997)
[71] G. Y. Yang, E. C. Dickey, C. A. Randall, M. S. Randall, and L. A. Mann
“Modulated and ordered defect structures in electrically degraded Ni–BaTiO3 multilayer ceramic capacitors”
JOURNAL OF APPLIED PHYSICS, 94, p5990-5996 (2003)