研究生: |
陳科任 Ke-Zen Chen |
---|---|
論文名稱: |
利用步伐姿態來辨識人的步行路徑和身份 Gait Analysis for Human Walking Paths and Identities Recognition |
指導教授: |
黃仲陵
Chung-Lin Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 56 |
中文關鍵詞: | 步伐辨識 |
外文關鍵詞: | Gait Recognition |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年人們對於環境的安全性更加的重視,許多專家入續投入研究人工智慧型的監控式系統。在計算機視覺的領域裡,虹膜,面貌,語音,指紋,手寫辨識,和步伐等常被用來當作辨識人身份的特徵。在這篇論文當中,我們使用步伐來當作辨識的特徵,因為此特徵的粹取並不需要和人近距離的接觸,可以和人保持一定的距離,而且並不需要太精密的攝影設備。每個人走路的姿勢,手腳的擺幅,和力道都不ㄧ樣,所以我們利用它來做身份辨識。在此我們結合了步伐的動態和靜態資訊去辨識人步行的路徑和身份。首先我們利用擺幅距離的週期性去估計每一段影像序列的週期並將每段週期獨立分割出來。對於每段週期,我們利用邏輯運算取得靜態資訊,而動態資訊我們利用分析移動向量的直方圖統計來取得。將所取得的資訊轉換到低維度的空
間,在此空間的特徵向量代表此人。假設不同類別的特徵向量群為獨立的高斯分佈,然後我們使用鑑別函式去決定此人的步行路徑。當測試的特徵向量進來,我們拿它來和事先建立好的資料庫做比對,用距離鄰近法則來判定此人的身份,最後我們利用臨界值來選擇切換要用靜態或動態資訊的排序來當作辨識的結果。實驗結果證實我們所提出的系統架構可以有效的克服拿公事包遮蔽身體的問題,並可達到滿高的辨識率。
In this thesis, we combine the dynamic and static information extracted from gait to identify the walking human object. First we utilize the periodicity of swing distances to estimate the gait period for each gait sequence and divide them to sub-cycles. For each gait cycle, we extract the static information by proceeding intersecting operation and dynamic information by analyzing the statistic histogram of motion vectors. The extracted information is transformed into low dimensional embedding space by dimensionality reduction process. The low-dimensional feature vector is used to represent the subject. Then, we use a set of discriminant functions to determine the decision regions for normal data distribution, and then we can recognize the human walking path. Given a test feature vector, the nearest neighbor classifier is applied to compare with the feature vectors established from a gait database for subject identification. The proposed algorithm is evaluated on the CASIA gait database, and the experimental results demonstrate that own system achieves a high recognition rate.
[1] HAN SU, FENG-GANG HUANG. “Human gait recognition based on motion analysis”, in proceedings of the fourth international Conference on machine learning and cybernetics, Guangzhou, 18-21 August 2005.
[2] Nikolaos V. Boulgouris, Konstantinos N. Plataniotis, and Dimitris Hatzinakos. “Gait analysis and recognition using angular transforms”, Electrical and Computer Engineering, 2004. Canadian Conference on Volume 3, 2-5 May 2004 Page(s):1317 - 1320 Vol.3.
[3] Nikolaos V. Boulgouris, Konstantinos N. Plataniotis, and Dimitris Hatzinakos, “Gait anaysis and recognition using angular transforms”, CCECE 2004- CCGEI 2004, Niagara Falls, May/mai 2004 IEEE.
[4] Nikolaos V. Boulgouris, Member, IEEE, and Zhiwei X. Chi, “Gait recognition using random transform and linear discriminant analysis”, IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 3, MARCH 2007.
[5] Ju Han, Student Member, IEEE, and Bir Bhanu, “Individual recognition using gait energy image”, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 2, FEBRUARY 2006.
[6] P.S. Huang, C.J. Harris, and M.S. Nixon, “Recognizing Humans by Gait via
Parametric Canonical Space.” Artificial Intelligence in Eng., vol. 13, pp. 359-
366, 1999.
[7] Jianyi Liu, Nanning Zheng, “Gait history image: a novel temporal template for gait recognition”, ICME 2007.
[8] Qinyong Ma1, Shenkang Wang1, Dongdong Nie2, Jianfeng Qiu1, “Recognizing humans based on gait moment image”, Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing 2007 IEEE.
[9] N.V. Boulgouris, D. Hatzinakos, and K.N. Plataniotis, “Gait recognition: a challenging signal processing technology for biometric identification”, IEEE Signal Processing Magazine, Vol. 22, No 6, pp. 78-90, November 2005.
[10] T. Horprasert, D. Harwood, and L. S. Davis, “A robust background subtraction and shadow detection”, Asian Conf. on Computer Vision, Taipei, Taiwan, pp.983-988 2000.
[11] Elgammal, A., Duraiswami, R., Harwood, D., and Davis, L.S. “Background and Foreground Modeling Using Nonparametric Kernel Density Estimation for Visual Surveillance”, Proc. Of the IEEE, vol. 90, 2002.
[12] Lucas B D and Kanade T 1981, “An iterative image registration technique with an application to stereo vision”, Proceedings of Imaging understanding workshop, pp 121-130.
[13] S. Yu, D. Tan, T. Tan, “A Framework for Evaluating the Effect of View Angle, Clothing and Carrying Condition on Gait Recognition.” 18th International Conference on Pattern Recognition, pp. 441-444, 2006.
[14] Khalid Bashir, Tao Xiang, Shaogang Gong, Queen Mary, “Feature selection on gait energy image for human identification”, IEEE ICASSP 2008.
[15] Yu, S., Tan, D., Tan, T., “Modeling the effect of view angle variation on appearance-based gait recognition.” In: Proc. of the 7th Asian Conference on Computer Vision, Hyderabad, India (January 2006) 807–816.
[16] Ming-Hsu Cheng, “Gait analysis for human identification through manifold learning and HMM.” June 2006.
[17] Shiqi Yu, Daoliang Tan, Kaiqi Huang, and Tieniu Tan, “Reducing the effect of noise on human contour in gait recognition.” In Proc. of the 2nd International Conference on Biometrics (ICB07), pages 338-246. Seoul, Korea, August, 2007.