簡易檢索 / 詳目顯示

研究生: 劉邦炅
Pang-chiung, Liu
論文名稱: 兔子視網膜中對藍色視錐具專一性雙極細胞之形態研究
Morphological Identification of the Blue Cone Bipolar Cell in the Rabbit Retina
指導教授: 焦傳金
Chuan-Chin Chiao
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 56
中文關鍵詞: 雙極細胞色彩視覺兔子視網膜
外文關鍵詞: bipolar cell, color vision, rabbit retina
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雙極細胞在從光感受器到節細胞的視覺訊號傳遞途徑上,一直扮演著重要的角色,而雙極細胞可依其形態及生理反應區分為十三種以上不同類別,所以在色彩視覺研究上,辨別出對不同視錐細胞具有專一性之雙極細胞是很重要的一個工作。而目前對於靈長類動物的色彩視覺傳遞途徑之研究比較透徹,但是在其他哺乳動物上,對於色彩視覺傳遞途徑的了解卻相當缺乏。
    在本研究中,我們利用微注射的方式以標定兔子視網膜上的雙極細胞;藉由花生凝集素來標定視錐細胞;使用抗藍色視錐視紫蛋白之抗體來標定藍色視錐的感光區域,最後,利用影像重疊法以檢查所標定不同類別的雙極細胞是否對不同視錐細胞具有選擇性。
    實驗結果顯示,無論哪一種小軸突面積及中等軸突面積的雙極細胞都不具有視錐的選擇性;同時,實驗結果亦發現一種大軸突面積的雙極細胞對藍色視錐細胞具有選擇性。這種雙極細胞具有四到五個未分岔的主樹突,並且會與藍色視錐的足狀節有特定的接觸。除此之外,我們還觀察到另外兩種大軸突面積的雙極細胞。
    本研究顯示,兔子視網膜上關於色彩的雙極細胞與靈長類的雙極細胞有著明顯的形態差異。因此,在非靈長類動物的色彩訊息處理及傳遞功能上,極可能與靈長動物所知的情形有所不同。


    Bipolar cells play major roles in visual signal transmission from photoreceptors to ganglion cells, and can be further subdivided into at least 13 distinct types based on their morphology and physiology. Particularly, identification of the blue cone bipolar cell is an important work in color vision research. Color pathway has been studied for a long time in the primate, but the circuit for color processing in other mammals is still obscure, especially in the bipolar cell level. In this study, I was aiming to morphologically identify blue cone bipolar cells in the rabbit retina. For efficiently finding the blue cone bipolar cells, I used microinjection to mark bipolar cells, peanut agglutinin to label all cone cells, and anti-S cone opsin antibody to label S cone outer segments in the whole mount rabbit retina. I then superimposed the images to verify the cone selectivity in different injected bipolar cells. From the results of my experiments, each narrow-field and mediate-field type bipolar cells were showed to have no cone selectivity. However, there is one type of wide-field bipolar cells with S cone selectivity identified in my study. This type of cells gives rise 4-5 branchless primary dendrites to specifically contact S cone pedicles. In addition, there were also two other types of wide-field bipolar cells identified in my study, which have no S cone selectivity. In conclusion, the color encoding bipolar cells in rabbit retina are different from the ones found in primate retina. Therefore, the color information processing pathway of non-primate retina may be different from primate retina.

    Abstract (English) i Abstract (Chinese) ii Introduction 01 Materials and Methods 09 Results 15 Discussion 20 References 24 Tables and Figures 31

    Reference
    Bloomfield SA, Dacheux RF. (2001) Rod vision: pathways and processing in the mammalian retina. Prog. Retin. Eye Res. 20(3):351-384.
    Boycott BB, Hopkins JM, Sperling HG. (1987) Cone connections of the horizontal cells of the rhesus monkey's retina. Proc. R. Soc. Lond. B Biol. Sci. 229(1257):345-379.
    Boycott BB, Wassle H. (1991) Morphological Classification of Bipolar Cells of the Primate Retina. Eur. J. Neurosci. 3(11):1069-1088.
    Caldwell JH, Daw NW. (1978) New properties of rabbit retinal ganglion cells. J. Physiol. 276:257-276.
    Calkins DJ, Schein SJ, Tsukamoto Y, Sterling P. (1994) M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses. Nature 371(6492):70-72.
    Calkins DJ, Tsukamoto Y, Sterling P. (1998) Microcircuitry and mosaic of a blue-yellow ganglion cell in the primate retina. J. Neurosci. 18(9):3373-3385.
    Citron MC, Emerson RC, Levick WR. (1988) Nonlinear measurement and classification of receptive fields in cat retinal ganglion cells. Ann. Biomed. Eng. 16(1):65-77.
    Conway BR. (2001) Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1). J. Neurosci. 21(8):2768-2783.
    Dacey DM. (1993) The mosaic of midget ganglion cells in the human retina. J. Neurosci. 13(12):5334-5355.
    Dacey DM. (1999) Primate retina: cell types, circuits and color opponency. Prog. Retin. Eye Res. 18(6):737-763.
    Dacey DM. (2000) Parallel pathways for spectral coding in primate retina. Annu. Rev. Neurosci. 23:743-775.
    Dacey DM, Lee BB. (1994) The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367(6465):731-735.
    Dacey DM, Lee BB, Stafford DK, Pokorny J, Smith VC. (1996) Horizontal cells of the primate retina: cone specificity without spectral opponency. Science 271(5249):656-659.
    Dacey DM, Packer OS. (2003) Colour coding in the primate retina: diverse cell types and cone-specific circuitry. Curr. Opin. Neurobiol. 13(4):421-427.
    Dacey DM, Peterson BB, Robinson FR, Gamlin PD. (2003) Fireworks in the primate retina: in vitro photodynamics reveals diverse LGN-projecting ganglion cell types. Neuron 37(1):15-27.
    Dacheux RF, Raviola E. (1986) The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell. J. Neurosci. 6(2):331-345.
    DeMonasterio FM. (1978) Spectral interaction in horizontal and ganglion cells of the isolated arterially-perfused rabbit retina. Brain Res. 150:239-258.
    Euler T, Schneider H, Wassle H. (1996) Glutamate responses of bipolar cells in a slice preparation of the rat retina. J. Neurosci. 16(9):2934-2944.
    Euler T, Wassle H. (1995) Immunocytochemical identification of cone bipolar cells in the rat retina. J. Comp. Neurol. 361(3):461-478.
    Famiglietti EV. (1990) A new type of wide-field horizontal cell, presumably linked to blue cones, in rabbit retina. Brain Res. 535(1):174-179.
    Famiglietti EV, Jr. (1981) Functional architecture of cone bipolar cells in mammalian retina. Vision Res. 21(11):1559-1563.
    Famiglietti EV, Jr., Kolb H. (1975) A bistratified amacrine cell and synaptic cirucitry in the inner plexiform layer of the retina. Brain Res. 84(2):293-300.
    Famiglietti EV, Sharpe SJ. (1995) Regional topography of rod and immunocytochemically characterized "blue" and "green" cone photoreceptors in rabbit retina. Vis. Neurosci. 12(6):1151-1175.
    Hack I, Peichl L. (1999) Horizontal cells of the rabbit retina are non-selectively connected to the cones. Eur. J. Neurosci. 11(7):2261-2274.
    Hack I, Peichl L, Brandstatter JH. (1999) An alternative pathway for rod signals in the rodent retina: rod photoreceptors, cone bipolar cells, and the localization of glutamate receptors. Proc. Natl. Acad. Sci. U S A 96(24):14130-14135.
    Herr S, Klug K, Sterling P, Schein S. (2003) Inner S-cone bipolar cells provide all of the central elements for S cones in macaque retina. J. Comp. Neurol. 457(2):185-201.
    Jacobs GH. (1998) A perspective on color vision in platyrrhine monkeys. Vision Res. 38(21):3307-3313.
    Jeon CJ, Masland RH. (1995) A population of wide-field bipolar cells in the rabbit's retina. J. Comp. Neurol. 360(3):403-412.
    Johnson EN, Hawken MJ, Shapley R. (2001) The spatial transformation of color in the primary visual cortex of the macaque monkey. Nat. Neurosci. 4(4):409-416.
    Juliusson B, Bergstrom A, Rohlich P, Ehinger B, van Veen T, Szel A. (1994) Complementary cone fields of the rabbit retina. Invest Ophthalmol. Vis. Sci. 35(3):811-818.
    Kouyama N, Marshak DW. (1992) Bipolar cells specific for blue cones in the macaque retina. J. Neurosci. 12(4):1233-1252.
    Li W, Keung JW, Massey SC. (2004) Direct synaptic connections between rods and OFF cone bipolar cells in the rabbit retina. J. Comp. Neurol. 474(1):1-12.
    MacNeil MA, Heussy JK, Dacheux RF, Raviola E, Masland RH. (1999) The shapes and numbers of amacrine cells: matching of photofilled with Golgi-stained cells in the rabbit retina and comparison with other mammalian species. J. Comp. Neurol. 413(2):305-326.
    MacNeil MA, Heussy JK, Dacheux RF, Raviola E, Masland RH. (2004) The population of bipolar cells in the rabbit retina. J. Comp. Neurol. 472(1):73-86.
    MacNeil MA, Masland RH. (1998) Extreme diversity among amacrine cells: implications for function. Neuron 20(5):971-982.
    Mariani AP. (1984) Bipolar cells in monkey retina selective for the cones likely to be blue-sensitive. Nature 308(5955):184-186.
    Masland RH. (2001a). The fundamental plan of the retina. Nat. Neurosci. 4(9):877-886.
    Masland RH. (2001b) Neuronal diversity in the retina. Curr. Opin. Neurobiol. 11(4):431-436.
    McGillem GS, Dacheux RF. (2001) Rabbit cone bipolar cells: correlation of their morphologies with whole-cell recordings. Vis. Neurosci. 18(5):675-685.
    Nuboer JF. (1971) Spectral discrimination in a rabbit. Doc. Ophthalmol. 30:279-298.
    Nuboer JF, Moed PJ. (1983) Increament-threshold spectral sensitivity in the rabbit. J. Comp. Physiol. A 151:353-358.
    Nuboer JFW, vanNuys WM, Wortel JF. (1983) Cone system in the rabbit retina revealed by ERG-null-detection. J. Comp. Physiol. A 151:347-351.
    Peterson BB, Dacey DM. (2000) Morphology of wide-field bistratified and diffuse human retinal ganglion cells. Vis. Neurosci. 17(4):567-578.
    Pignatelli V, Strettoi E. (2004) Bipolar cells of the mouse retina: a gene gun, morphological study. J. Comp. Neurol. 476(3):254-266.
    Raviola E, Gilula NB. (1973) Gap junctions between photoreceptor cells in the vertebrate retina. Proc. Natl. Acad. Sci. USA 70(6):1677-1681.
    Rockhill RL, Daly FJ, MacNeil MA, Brown SP, Masland RH. (2002) The diversity of ganglion cells in a mammalian retina. J. Neurosci. 22(9):3831-3843.
    Roorda A, Metha AB, Lennie P, Williams DR. (2001) Packing arrangement of the three cone classes in primate retina. Vision Res. 41(10-11):1291-1306.
    Roorda A, Williams DR. (1999) The arrangement of the three cone classes in the living human eye. Nature 397(6719):520-522.
    Strettoi E, Dacheux RF, Raviola E. (1990) Synaptic connections of rod bipolar cells in the inner plexiform layer of the rabbit retina. J. Comp. Neurol. 295(3):449-466.
    Strettoi E, Masland RH. (1995) The organization of the inner nuclear layer of the rabbit retina. J. Neurosci. 15(1 Pt 2):875-888.
    Szel A, Juliusson B, Bergstrom A, Wilke K, Ehinger B, van Veen T. (1994) Reversed ratio of color-specific cones in rabbit retinal cell transplants. Brain Res. Dev. Brain Res. 81(1):1-9.
    Wassle H. (2004) Parallel processing in the mammalian retina. Nat. Rev. Neurosci. 5(10):747-757.
    Young HM, Vaney DI. (1991) Rod-signal interneurons in the rabbit retina: 1. Rod bipolar cells. J. Comp. Neurol. 310(2):139-153.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE