簡易檢索 / 詳目顯示

研究生: 彭韻慈
Peng, Yun-Tzu
論文名稱: Development of a Design Framework for Multi-Criteria Resin Transfer Molding Problem
發展多目標之樹脂轉注成型問題的設計架構
指導教授: 蘇哲平
Su, Jack C. P.
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 40
中文關鍵詞: 多目標最佳化目標規劃粒子群最佳化演算法Kriging
外文關鍵詞: Multi-criteria optimization, Goal Programming, Particle Swarm Optimization, GP, PSO
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 許多研究問題常需運用電腦模擬來解決並希望同時滿足多個目標,樹脂轉注成型(Resin Transfer Molding, RTM)就是其中的一個例子。本研究使用目標規劃(Goal Programming, GP)去評估RTM的問題,使用拉丁超方格設計(Latin Hypercube Design, LHD)從電腦模擬中挑選出訓練數據(Training Data),並使用Kriging建立近似模型(Approximation Model)來取代電腦模擬,並發展新的演算法在合理的時間下找出RTM製程最佳的變數設定包括入射孔、射出孔、壓力與黏度這四個變數的最佳設定以縮短RTM製程時間同時提高品質還有最小化預算與黏度設定的偏差值(Deviation)。最後再用模擬模型來驗證預測模型所找出的變數設定的結果。
    在演算法方面,本研究運用Kriging所提供之斜率資訊來改善粒子群最佳化演算法(Particle Swam Optimization ,PSO),並命名為PSO-Gradient演算法。結果發現本研究發展的演算法可以有效的搜尋出RTM製程的最佳變數設定且PSO-Gradient演算法的效果優於傳統PSO。


    Many design problems incorporate computer simulation as design tool and are required to meet several performance criteria. Resin Transfer Molding (RTM) process is one of the examples. In this research, we use Goal Programming (GP) to formulate the RTM problem, use Latin Hypercube Design (LHD) to sample the training data from computer simulation model, apply Kriging to construct an approximation model to replace the simulation model, and develop a new algorithm to identify the good design setting in a reasonable time for the RTM process. The values of gate location, vent location, pressure, and viscosity are determined to minimize the fill time, maximize the quality, and minimize the deviations from budget plan and viscosity setting. The performance of the setting identified by the approximation model is verified by simulation results.
    In our algorithm, we use the gradients estimated by Kriging model to improve Particle Swam Optimization (PSO) algorithm. We call it PSO-Gradient algorithms. The results show that this approach can effectively identify a good setting for RTM process and the PSO-Gradient algorithms outperforms traditional PSO.

    摘要 i ABSTRACT ii TABLE OF CONTENT iii TABLE LIST iv FIGURE LIST v 1. INTRODUCTION 1 2. LITERATURE REVIEW 4 2.1 Discuss the optimization of the RTM process variables 4 2.1.1 Sampling 4 2.1.2 Multi-criteria method 5 2.1.3 Approximation model 6 2.1.4 Optimization 8 2.2 Discuss the selection of RTM process variables 9 3. PROBLEM DEFINITION 10 4. METHODLOGY 14 4.1 Sampling 14 4.2 Kriging model 15 4.3 Goal programming 18 4.4 Optimization of variable setting 20 4.4.1 PSO Algorithm 21 4.4.2 PSO-Gradient Algorithm 24 5. RESULT 29 5.1 Algorithm comparison 29 5.2 Case study 34 6. CONCLUSIONS AND FUTURE RESEARCH 36 REFERENCE 38

    1.Booker, A. J., Conn, A. R., Dennis, J. E., Frank, P. D., Trosset, M., Torczon, V., “Global Modeling for Optimization: Boeing/IBM/Rice Collaborative Project”, The Boeing Company, Seattle, 1995.
    2.Charnes, A., Cooper, W.W., “Management model and industrial application of linear programming”, Wiley, New York, 1961.
    3.Chen, Y. T., Daves, H. T., Macosko, C. W., “Wetting of Fiber Mats for Composites Manufacturing: I. Visualization Experiments”, AICHE Journal, Vol. 41, 1995, pp 2261-2273.
    4.Cressie, N. A. C., “Statistics for Spatial Data”, John Wiley & Sons, New York, 1993.
    5.Cressie, N. A. C., “The Origins of Kriging”, Mathematical Geology, Vol. 22, 1990, pp 239-252.
    6.Eberhart, R. C., Kennedy, J., “A new optimizer using particle swarm theory”, Proceedings of the Sixth International Symposium on Micromachine and Human Science, 1995, pp 39-43.
    7.Field, D., “Goal programming for forest management”, Forest Science, Vol. 19, No. 2, 1973, pp 125–135.
    8.Gou, J., Zhang, C., Liang, Z., Wang, B., Simpson, J., “Resin transfer molding process optimization using numerical simulation and design of experiments approach” , POLYMER COMPOSITES, Vol. 24, No. 1, 2003, pp 1-12.
    9.Haywond, J.S., Harris, B., “Effect of process variables on the quality of RTM mouldings”, SAMPE Journal, Vol. 26, No. 1, 1990, pp 39-46.
    10.Hu, W., Li, E., Li, G. Y., “Optimization of drawbead design in sheet metal forming based on intelligent sampling by using response surface methodology”, Journal of Materials Processing Technology, Vol. 206, No.3, 2008, pp 45-55.
    11.Hung, Y., Joseph, V. R., Melkote, S. N., “Design and Analysis of Computer Experiments with Branching and Nested Factors”, Technometrics, 2008.
    12.Jiang, S., Zhang, C., Wang, B., “Optimum arrangement of gate and vent locations for RTM process design using a mesh distance-based approach,” Compos Part A, Vol. 33, 2002, pp 471-481.
    13.Koehler, J. R., Owen, A. B., “Computer Experiments”, Elsevier Science, New York, 1996.
    14.Lin, M.Y., Murphy, M.J., Hahn, H.T., “Resin transfer molding process optimization”, Compos Part A, Vol. 31, 2001, pp 361-371.
    15.Luo, J., Liang, Z., Zhang, C., Wang, B., “Optimum tooling design for resin transfer molding with virtual manufacturing and artificial intelligence”, Compos Part A, Vol. 32, 2001, pp 877-888.
    16.Luo, Y., Verpoest, I., Hoes, K., Vanheule, M., Sol, H., Cardon, A., “Permeability measurement of textile reinforcements with several test fluids”, Compos Part A, Vol. 32, 2001, pp 1497-1504.
    17.Matias,J. M., Vaamonde, A., Taboada, J., Gonzalez, M. W., “Comparison of Kriging and Neural Networks With Application to the Exploitation of a Slate Mine”, Mathematical Geology, Vol. 36, No. 4, 2004, pp 463-486.
    18.Mckay, M. D., Beckman, R. J., Conover, W. J., “A comparison of three methods for selecting values of input variables in the analysis of output from a computer code” , Technometrics, Vol. 21, 1979, pp 239-245.
    19.Sacks, J., Welch, W. J., Mitchell, T. J., Wynn, H. P., “Design and Analysis of Computer Experiments”, Statistical Science, Vol. 4, No. 4, 1989, pp 409-435.
    20.Sheng, C.H., Su, C.P., “Development of Heuristic Algorithms for Branching and Nested Factor Design of Computer Experiment”, 2010.
    21.Spoerre, J., Zhang, C., Wang, H. P., Parnas R., “Integrated product and process design for resin transfer molded parts”, Journal of Composite Materials, Vol. 32, No. 13, 1998, pp 1244-1272.
    22.Thomas J. S., Brian J. W., William I. N., “The Design and Analysis of Computer Experiments“, Springer-Verlag, New York, 2003.
    23.Timothy, W. S., Timothy, M. M., John J. K., Farrokh, M., “Comparison of Response Surface and Kriging Models for Multidisciplinary Design Optimization”, American Institute of Aeronautics and Astronautics, Vol. 2, 1998, pp 231-242.
    24.Wang, K., Zhang, C., Su, C.P., Wang, B., “Kriging Based Process Optimization in Resin Transfer Molding Simulation”, 2009.
    25.Welch, W. J., Yu, T.-K., Kang, S. M., Sacks, J., “Computer Experiments for Quality Control by Parameter Design”, Journal of Quality Technology, Vol. 22, No. 1, 1990, pp 15-22.
    26.William, W. C., Lawrence, M. S., Kaoru, T., “Data Envelopment Analysis : a comprehensive text with models, applications, references, and DEA-Solver software”, Kluwer Academic Publishers, Boston, 2000.
    27.Young, W. B., Tseng, C. W., “Study on the Pre-Heated Temperatures and Injection Pressures of the RTM Process”, J. of Reinforced Plastics and Composites, Vol. 13, 1994, pp 467-482.
    28.Yuriko, I., Ross, J. W., Yuji, N., “An approach for solving nonlinear multi-objective separable discrete optimization problem with one constraint”, European Journal of Operational Research, Vol. 162, No. 2, 2005, pp 503-513.
    29.Zhao, W., Li, J., Zhang, C., Liang, Z., Wang, B., “feature-based cost estimation for composite structures with fuzzy multi-attribute utility theory”, Int. J. Industrial and Systems Engineering, Vol. 1, 2006, pp 284-300.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE