簡易檢索 / 詳目顯示

研究生: 徐浩庭
Hsu, Hao-Ting
論文名稱: 基於線性和非線性心率變異度指標的城市空氣污染與心血管系統之互動分析
Analysis of the Interaction between Urban Air Pollution and the Cardiovascular System Based on Linear/Nonlinear Heart Rate Variability Indexes
指導教授: 黃柏鈞
Huang, Po-Chiun
口試委員: 馬席彬
Ma, Hsi-Pin
蔡佩芸
Tsai, Pei-Yun
黃慶昌
Huang, Ching-Chang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 68
中文關鍵詞: 空氣污染心率變異度分析時間序列分群傾向性評分匹配
外文關鍵詞: Air Pollution, HRV Analysis, Time Series Clustering, Propensity Score Matching
相關次數: 點閱:26下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去的研究中已有大量證據表明,對於易感人群而言,長期暴露於空氣污染相對於短期急性暴露,會對心血管疾病的發病率和死亡率產生明顯的影響。然而,過去大部分研究專注於短期暴露,而這些研究可能因不同研究人群或研究方法的緣故造成結果不一致,因此本篇論文採用不同的研究方法,來分析空氣污染與心血管系統之間的關聯。

    本篇論文根據台灣環境部的空氣污染監測數據,主要關注污染物為懸浮顆粒物、氮氧化物、二氧化硫以及一氧化碳等污染物。由於臨床試驗數據的地理限制,本研究的分析僅限於台北市。首先,先利用空氣污染數據,研究將不同污染水平的區域進行分類,並同時提取由國立台灣大學醫學院附設醫院所提供的相對應區域臨床數據,從24小時心電圖中分別截取白天以及夜晚各四小時進行線性以及非線性心率變異性分析,再使用Wilcoxon rank sum test評估來自不同空氣污染水平的臨床數據之間的HRV指標差異。

    在白天的分析中,來自較高污染水平的臨床患者在非線性的多尺度熵(MSE) Scale 15 - Scale 20數值均顯著低於低污染水平的臨床患者(p-value < 0.050),以及去趨勢波動分析(DFA)中的短期分行標度指數 $\alpha_{1}$在兩區域間也具有顯著差異性(p-value = 0.041)。這些結果表明,在不同空氣污染水平的慢性暴露下,低污染水平的臨床試驗群體在白天的心律更加複雜,心血管具有更好的調節功能。


    Past research has provided substantial evidence indicating that chronic exposure to air pollution among susceptible populations has a notable effect on the incidence and mortality rates of cardiovascular diseases compared to acute exposure. However, prior research has concentrated on brief exposure, and these inquiries have produced conflicting findings, possibly because of differences in study populations or methodologies. Therefore, this paper employs different research methods to analyze the association between air pollution and the cardiovascular system.

    This study utilizes air pollution monitoring data obtained from the Ministry of Environment in Taiwan, with a specific emphasis on pollutants including suspended particulate matter, nitrogen oxides, sulfur dioxide, and other relevant substances. Due to geographical constraints, the analysis is confined to Taipei City. Using air pollution data, the research categorizes regions with different pollution levels and concurrently extracts clinical data provided by the National Taiwan University Hospital within the same regions. Four hours of the daytime and midnight were intercepted from the 24-hour ECG for linear and nonlinear heart rate variability(HRV) analysis. Following this, a Wilcoxon rank-sum test was utilized to evaluate the disparities in HRV indicators among clinical patients exposed to varying levels of air pollution.

    In the daytime analysis, clinical patients from higher pollution levels exhibit significantly lower values in nonlinear multiscale entropy (MSE) for Scale 15 to Scale 20 (p-value < 0.050) and a notable difference in the detrended fluctuation analysis (DFA) short-term fractal scaling exponent $\alpha_{1}$ between the two regions (p-value = 0.041). These results indicate that, under chronic exposure to different air pollution levels, clinical trial populations with lower pollution levels have more complex daytime heart rhythms and better cardiovascular regulatory function.

    Abstract (Chinese) II Acknowledgments (Chinese) IV Abstract VI Contents VIII List of Figures XI List of Tables XII 1 Introduction 1 1.1 Background................................ 1 1.2 Motivation................................. 2 1.3 MainContribution ............................ 4 1.4 Organization ............................... 5 2 Literature Review 7 2.1 Overview ................................. 7 2.2 Short-term Exposure ........................... 8 2.3 Long-term Exposure ........................... 14 3 Proposed Methods and Algorithms 18 3.1 Overview ................................. 18 3.2 AirPollutionLevelsRegionalClustering. . . . . . . . . . . . . . . . . 21 3.2.1 ModelOverview ......................... 21 3.2.2 TimeSeriesK-meansAlgorithm[1]............... 22 3.2.3 ClusteringAirPollutionDataforRegions . . . . . . . . . . . . 24 3.3 PropensityScoreMatching........................ 25 3.3.1 ThePropensityScore....................... 25 3.3.2 MatchingPrinciples ....................... 26 3.3.3 ApplicationsinClinicalExperiments . . . . . . . . . . . . . . 28 3.4 ECGDataPreprocessing ......................... 29 3.4.1 DaytimeandMidnightDataSelection . . . . . . . . . . . . . . 29 3.4.2 ECGDataValidation....................... 29 3.4.3 InterpolationforAbnormalSignal................ 31 3.5 HeartRateVariability........................... 32 3.5.1 LinearAnalysis.......................... 33 3.5.2 TimeDomainAnalysis...................... 34 3.5.3 NonlinearAnalysis........................ 36 3.5.4 DetrendedFluctuationAnalysis ................. 39 3.6 HypothesisTest.............................. 40 3.6.1 WilcoxonRank-sumTest..................... 41 4 Results and Analysis 44 4.1 AreasClusteringofAirPollutionData.................. 44 4.1.1 AirPollutionDataPreprocessing................. 44 4.1.2 AreasClustering ......................... 51 4.2 PSMintheClinicalTrialPopulation................... 53 4.3 AnalysisResults.............................. 54 4.3.1 LinearHRVAnalysisResults .................. 54 4.3.2 NonlinearAnalysisResults.................... 56 5 Conclusions and Future Works 62 5.1 Conclusions................................ 62 5.2 FutureWorks ............................... 63 Bibliography 64

    [1] X. Huang, “Time series k-means: A new k-means type smooth subspace clustering for time series data,” Information Sciences, vol. 367-368, pp. 1–13, 2016.
    [2] WHO, “Cardiovascular diseases (CVDs),” 2023. [Online]. Available: https: //www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
    [3] M. Malik, “Heart rate variability: standards of measurement, physiological interpretation and clinical use.” Circulation, vol. 93, no. 5, pp. 1043–1065, 1996.
    [4] H. Tsuji, “Impact of reduced heart rate variability on risk for cardiac events. the framingham heart study,” Circulation, vol. 94, no. 11, pp. 2850–2855, 1996.
    [5] N. Pieters, “An epidemiological appraisal of the association between heart rate variability and particulate air pollution: a meta-analysis,” Heart, vol. 98, no. 15, pp. 1127–1135, 2012.
    [6] R.D.Brook, “Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association,” Circulation, vol. 121, pp. 2331–2378, 2010.
    [7] F. Huang, “Short-term exposure to particulate matter on heart rate variability in humans: a systematic review of crossover and controlled studies,” Environ Sci Pollut Res Int, vol. 28, pp. 35 528–35 536, 2021.
    [8] D. Meier-Girard, “Association of long-term exposure to traffic-related PM(10) with heart rate variability and heart rate dynamics in healthy subjects,” Environ. Int, vol. 125, pp. 107–116, 2019.
    [9] M. Costa, “Multiscale entropy analysis of complex physiologic time series,” Phys Rev Lett., vol. 89, no. 6, p. 068102, 2002.
    [10] C.K. Peng, “Quantification of scaling exponents and crossover phenomena in non-stationary heartbeat time series,” Chaos, vol. 5, no. 1, pp. 82–87, 1995.
    [11] S. J, “Long-term effects of exposure to particulate air pollution.” Clin Occup Environ Med, vol. 5, no. 4, pp. 837–848, 2006.
    [12] K. N. Shields, “Traffic-related air pollution exposures and changes in heart rate variability in Mexico city: A panel study,” Environ Health, vol. 12, 2013.
    [13] D. Liao, “Association of higher levels of ambient criteria pollutants with impaired cardiac autonomic control: A population-based study,” American Journal of Epidemiology, vol. 159, no. 8, pp. 768–777, 2004.
    [14] C.-C. Chan, “Association between nitrogen dioxide and heart rate variability in a susceptible population,” European Journal of Cardiovascular Prevention and Rehabilitation, vol. 12, no. 6, pp. 580–586, 2005.
    [15] R. D. Brook, “Hemodynamic, autonomic, and vascular effects of exposure to coarse particulate matter air pollution from a rural location,” Environ Health Per- spect, vol. 122, no. 6, pp. 624–630, 2014.
    [16] J.B.Byrd, “Acute increase in blood pressure during inhalation of coarse particulate matter air pollution from an urban location,” Journal of the American Society of Hypertension, vol. 10, no. 2, pp. 133–139, 2016.
    [17] R. B. Devlin, “Controlled exposure of humans with metabolic syndrome to concentrated ultrafine ambient particulate matter causes cardiovascular effects,” Toxicological Sciences, vol. 140, pp. 61–72, 2014.
    [18] ——, “Elderly humans exposed to concentrated air pollution particles have decreased heart rate variability,” The European Respiratory Journal Supplement 40, pp. 76–80, 2003.
    [19] A. A. Fakhri, “Autonomic effects of controlled fine particulate exposure in young healthy adults: effect modification by ozone,” Environ Health Perspect, vol. 117, no. 8, pp. 1287–1292, 2009.
    [20] D. W. Graff, “Exposure to concentrated coarse air pollution particles causes mild cardiopulmonary effects in healthy young adults,” Environ Health Perspect, vol. 117, no. 7, pp. 1089–1094, 2009.
    [21] K. Heusser, “Ultrafine particles and ozone perturb norepinephrine clearance rather than centrally generated sympathetic activity in humans,” Sci Rep, vol. 9, no. 1, p. 3641, 2019.
    [22] Y.-C. T. Huang, “Synergistic effects of exposure to concentrated ambient fine pollution particles and nitrogen dioxide in humans,” Inhal Toxicol, vol. 24, no. 12, pp. 790–797, 2012.
    [23] J. M. Samet, “Concentrated ambient ultrafine particle exposure induces cardiac changes in young healthy volunteers,” Am J Respir Crit Care Med, vol. 179, no. 11, pp. 103 488–103 429, 2009.
    [24] E. Tobaldini, “Acute particulate matter affects cardiovascular autonomic modulation and ifn-γ methylation in healthy volunteers,” Environ Res, vol. 161, pp. 97– 103, 2018.
    [25] R. Vora, “Inhalation of ultrafine carbon particles alters heart rate and heart rate variability in people with type 2 diabetes,” Part Fibre Toxicol, vol. 11, p. 31, 2014.
    [26] W. Zareba, “ECG parameters and exposure to carbon ultrafine particles in young healthy subjects,” Inhal Toxicol, vol. 21, no. 3, pp. 223–233, 2009.
    [27] D. F. Dietrich, “Differences in heart rate variability associated with long-term exposure to NO2,” Environmental Health Perspectives, vol. 116, no. 10, pp. 1357– 1361, 2008.
    [28] J. C. Bezdek, “A convergence theorem for the fuzzy ISODATA clustering algorithms,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-2, no. 1, pp. 1–8, 1980.
    [29] S. B. Kim, “Characterization of spatially homogeneous regions based on temporal patterns of fine particulate matter in the continental United States,” J. Air Waste Manag. Assoc, vol. 58, no. 7, pp. 964–675, 2008.
    [30] D. B. R. PAUL R. ROSENBAUM, “The central role of the propensity score in observational studies for causal effects,” Biometrika, vol. 70, pp. 41–55, 1983.
    [31] P.C. Austin, “An introduction to propensity score methods for reducing the effects of confounding in observational studies,” Multivariate Behav Res, vol. 46, no. 3, pp. 399–424, 2011.
    [32] A. Kline and Y. Luo, “Psmpy: A package for retrospective cohort matching in python,” in 2022 44th Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), pp. 1354–1357.
    [33] R. B. D. Jr, “Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group,” Statistics in Medicine, vol. 17, pp. 2265–2281, 1998.
    [34] M. A. Peltola, “Role of editing of R-R intervals in the analysis of heart rate variability,” Front Physiol, vol. 23, no. 3, p. 148, 2012.
    [35] U. R. Acharya, “Heart rate variability: a review,” Med Biol Eng Comput, vol. 44, no. 12, pp. 1031–1051, 2006.
    [36] J. S. Richman and J. R. Moorman, “Physiological time-series analysis using approximate entropy and sample entropy,” American Journal of Physiology. Heart and Circulatory Physiology, vol. 278, no. 6, pp. H2039–2049, 2000.
    [37] M. Costa, “Multiscale entropy analysis of biological signals,” Phys Rev E Stat Nonlin Soft Matter Phys, vol. 71, no. 2, p. 021906, 2005.
    [38] R. Krishnam, S. Chatlapalli, H. Nazeran, E. Haltiwanger, and Y. Pamula, “Detrended fluctuation analysis: A suitable long-term measure of HRV signals in children with sleep disordered breathing,” in 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 1174–1177.
    [39] W. Navidi, Statistics for Engineers and Scientists, 4th ed. McGraw-Hill Education, 2015.
    [40] B. D. Nunan D, Sandercock GRH, “A quantitative systematic review of normal values for short-term heart rate variability in healthy adults.” Pacing Clin Electro-physiol, vol. 33, p. 1407–17, 2010.

    QR CODE