簡易檢索 / 詳目顯示

研究生: 廖政華
Jeng-Hwa Liao
論文名稱: 鑭鍶錳氧-鋯鈦酸鉛異質結構系統之複鐵交互耦合作用之研究
A Study of Multiferroic Exchange Coupling in La1-xSrxMnO3–Pb(Zr0.5Ti0.5)O3 Heterostructure Systems
指導教授: 吳泰伯
Tai-Bor Wu
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 124
中文關鍵詞: 複鐵材料
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 複鐵材料(Multiferroic)是將鐵電與鐵磁結合在一體,此材料具有無法由單一鐵電或鐵磁所達成之新穎的特性。在本研究中,複鐵材料是由鑭鍶錳氧(La1-xSrxMnO3)(LSMO)之鐵磁性與鋯鈦酸鉛(Pb(Zr1-xTix)O3)(PZT)之鐵電性所合成,當PZT在無外加偏壓或外加偏壓為±7V時,其複鐵交互耦合作用將在本研究中做詳細的討論。
    磊晶之LSMO薄膜(x = 0.25)鍍製在鈦酸鍶(SrTiO3)(STO)單晶基板上,其居禮溫度(TC)隨膜厚的減少而降低。死層的膜厚為5 nm,具絕緣性質,且經熱活化能躍遷理論證實相分離的存在。超高真空系統之導電性原子力顯微鏡所量測之影像亦證實此一結果。另一方面,磊晶之LSMO薄膜(x = 0.1)在STO與鋁酸鑭(LaAlO3)(LAO)單晶基板上之磁傳導特性與應變效應之關係亦被詳細討論。薄膜應變鬆弛的結果會導致反鐵磁絕緣相的發生。隨著膜厚的增加,在LAO基板上之薄膜其反鐵磁絕緣相的特性會越明顯;在STO基板上之薄膜其磁化量與TC均會降低。接著我們鍍製磊晶PZT/La0.9Sr0.1MnO3之雙層結構在摻雜鈮之鈦酸鍶基板上(Nb-doped STO)。磁性量測顯示在場冷與零場冷間有一分離現象,其代表著磁性非均質結構存在於界面處,此結構組成為鐵磁晶粒鑲埋在非鐵磁基質中。當PZT極化時在自旋群內會引發一自旋子釘鎖效應(Spin-pinning effect),此效應會造成零場冷之M/M(10K)比值、分離溫度與磁滯曲線的變化。此外,我們亦探討鐵電場效應對磊晶La0.75Sr0.25MnO3/PZT/La0.75Sr0.25MnO3三層結構的磁性性質之影響。PZT之極化造成的Spin-pinning effect會使三層結構內之LSMO層其磁化量與TC均下降,而矯頑磁場則是上升。在三層結構中,鐵磁層與自旋子釘鎖層之間的鐵磁-反鐵磁交互耦合作用的可能性亦在此研究中做探討。


    Abstract
    Multiferroics, which combine ferromagnetism and ferroelectricity in one body, exhibit novel characteristics and could not be achieved separately in either ferroelectric or ferromagnetic (FM) materials. In this study, the multiferroic exchange coupling between the ferromagnetic, La1-xSrxMnO3 (LSMO), and ferroelectric, Pb(Zr1-xTix)O3 (PZT), materials was demonstrated under the condition that the PZT was unpolarized or polarized with an applied voltage, Va = ±7V.
    Epitaxial LSMO films (x = 0.25) deposited on SrTiO3 (STO) substrate display a decrease in Curie temperature (Tc) with reducing the film thickness down to 5 nm. The 5-nm-thick film, i.e. the thickness of the dead layer, displays an insulative characteristic and the phase-separation phenomenon was demonstrated by the thermally-activated hopping transport model. The conductive atomic force microscopy images also confirm the results. On the other hand, the strain effect on the magnetotransport properties of epitaxial LSMO films (x = 0.1) on STO and LaAlO3 (LAO) substrate, respectively, is also demonstrated. The strain relaxation of films results in the formation of spin-canted antiferromagnetic (AFM) insulative phase. The characteristics of AFM insulative phase become apparent with increasing the film thickness, which leads to a clear AFM transition in the films grown on LAO and a reduction of magnetization and Tc in those on STO. In chapter 6, the magnetic properties of Pb(Zr0.5Ti0.5)O3/La0.9Sr0.1MnO3 bilayers epitaxially grown on Nb-doped STO show a divergence between field-cooled (FC) and zero-field-cooled (ZFC) magnetization measurements, which suggests the presence of a magnetic inhomogeneity composing of ferromagnetic grains embedded in non-ferromagnetic matrix at the interface. The polarization state of the PZT induces a spin-pinning effect on the spin clusters, causing a variation of the M/M(10K) ratio in ZFC, the divergent temperature, and the hysteresis loop characteristics. In chapter 7, the ferroelectric field effect on modulating the magnetic properties of La0.75Sr0.25MnO3/PZT/La0.75Sr0.25MnO3 trilayers epitaxially deposited on Nb-doped STO was investigated. The polarization of the PZT leads to a spin-pinning effect, which decreases the Tc and the magnetization of the LSMO layers and increases the coercive field for magnetic switching. A possible presence of a FM-AFM exchange coupling between the FM and the spin-pinned layers is also demonstrated.

    《Contents》 Table captions………………………………………………………………….IV Figure captions………………………………………………………………….V Chapter 1 Introduction…………………………………………………………..1 1-1 Prelude………………………………………………………………….....2 1-2 Motivation……………………………………………………………..….5 Chapter 2 Literature Review…………………………………………………….9 2-1 Introduction to magnetic materials…………………………………….......10 2-1-1 Diamagnetism…………………………………………………...11 2-1-2 Paramagnetism…………………………………………………..12 2-1-3 Ferromagnetism………………………………………………....13 2-1-4 Ferrimagnetism……………………………………………….....16 2-1-5 Antiferromagnetism……………………………………………..16 2-1-6 Curie temperature (TC) and Néel temperature (TN)………….….18 2-2 Theory of Colossal Magnetoresistance (CMR)………………………….19 2-2-1 Early experiments…………………………………….…………19 2-2-2 Electronic features………………………………………………24 2-2-3 Double Exchange………………………………………………..26 2-2-4 Jahn-Teller effect………………………………………………..29 2-2-5 Super-exchange interaction……………………………………..30 2-2-6 Phase separation………………………………………………....32 2-3 Ferroelectric materials……………………………………….………..…35 2-4 Multiferroic materials……………………………………….………..…39 Chapter 3 Experimental Procedure……………………………………….…….41 3-1 Substrate preparation…………………………………………….….…...42 3-2 Film deposition…………………………………………………….……..42 3-3 Structural analysis…………………………………………………….…..43 3-3-1 X-ray diffraction (XRD)………………………………………...43 3-3-2 Scanning electron microscope (SEM)……………………..……44 3-4 Stoichiometry analysis………………………………………….………..44 3-5 Magnetism analysis……………………………………….……………..45 3-5-1 Magnetic measurement…………………………………….…....45 3-5-2 Magneto-transport measurement………………….………….....45 3-6 Electrical measurement…………………….……………………………46 3-7 Surface analysis…………………………….……………………………46 3-7-1 X-ray photoelectron spectroscopy (XPS)…………………….....46 3-7-2 Surface morphology and current distribution…..……………….47 Chapter 4 Near-interface magnetotransport in La0.75Sr0.25MnO3 epitaxial films on SrTiO3 substrate……………………………………..………….48 4-1 Introduction………….…………………………………………………..49 4-2 Experimental procedure….……………………………………………...50 4-3 Results and discussion…….……………………………………………..50 4-4 Conclusions………………….…………………………………………..64 Chapter 5 Thickness-dependent magnetotransport properties of La0.9Sr0.1MnO3 epitaxial films on SrTiO3 and LaAlO3 substrates……………..…...66 5-1 Introduction……………………………….……………………………..67 5-2 Experimental procedure……….………………………………………....68 5-3 Results and discussion………….………………………………………..68 5-4 Conclusions…………………….………………………………………..76 Chapter 6 Ferroelectric-field-induced spin-pinning effect in Pb(Zr0.5Ti0.5)O3 / La0.9Sr0.1MnO3 bilayers……………………….................................77 6-1 Introduction…………………………………………………….………..78 6-2 Experimental procedure……………………………………….………....79 6-3 Results and discussion………………………………….……….………..79 6-4 Conclusions……………………………………………………….……..90 Chapter 7 Ferroelectric field effect on the magnetic properties of La0.75Sr0.25MnO3/Pb(Zr0.5Ti0.5)O3/La0.75Sr0.25MnO3 heterostructures…91 7-1 Introduction….…………………………………………………………..92 7-2 Experimental procedure……….………………………………………....93 7-3 Results and discussion……………………………………………….......94 7-4 Conclusions……………………………….……………………………103 Chapter 8 Summary…………………………………………………………....105 Chapter 9 Future Prospects…………………………………………………...108 9-1 Ferroelectric-driven spin-dependent tunneling devices………………..109 9-2 Ferroelectric-field controlled spin valve……………………………….110 Reference……………………………………………………………………..111 《Table captions》 Table 3-1 The deposition conditions of the La0.9Sr0.1MnO3 thin films. 43 Table 3-2 The deposition parameters of the La0.75Sr0.25MnO3 thin films. 43 Table 3-3 The deposition conditions of the Pb(Zr0.5Ti0.5)O3 thin films. 43 Table 3-4 The composition of the La0.9Sr0.1MnO3, La0.75Sr0.25MnO3, and Pb(Zr0.5Ti0.5)O3 thin films. 44 Table 7-1 The calculation on the thickness of the dead layer. 99 Table 7-2 The calculation on the thickness of the pin-pinning effect. 99 《Figure captions》 Fig. 1-1 Electronic, magnetic, and structural phase diagram of La1-xSrxMnO3. Filled and open circles are the Néel (TN) and Curie (TC) temperatures, respectively. The abbreviations mean paramagnetic insulator (PI), paramagnetic metal (PM), antiferromagnetic insulator (AFI), ferromagnetic insulator (FI), and ferromagnetic metal (FM). Filled square stands for the structural phase transition temperature between high-temperature rhombohedral (R) and low-temperature orthorhombic phase (O). 6 Fig. 1-2 PbTiO3-PbZrO3 subsolidus phase diagram. 7 Fig. 2-1 Ordering of the magnetic dipole in magnetic materials. 11 Fig. 2-2 Domain structure of the ferromagnetism 13 Fig. 2-3 Hysteresis loop for a ferro- ore ferrimagnet 15 Fig. 2-4 The variation between the saturated magnetization and the temperature. 15 Fig. 2-5 Schematic diagram of the spin configuration of an FM-AFM bilayer at different stage (i)-(v) of an exchange biased hysteresis loop. Note that the spin configurations are just a simple cartoon to illustrate the effect of the coupling. 17 Fig. 2-6 The cubic structure of the perovskite Manganese. 19 Fig. 2-7 Temperature dependence of resistivity for La1-xSrxMnO3 crystals under various magnetic fields; (a) x = 0.15, (b) x = 0.175, (c) x = 0.20. 21 Fig. 2-8 Magnetic properties of La1-xSrxMnO3 vs composition: (a) Curie temperature and (b) saturation magnetization at 90 K vs Sr content in percent. (c) Resistivityρvs Sr content x. 21 Fig. 2-9 Early data on the dc magnetoresistance of La0.7Sr0.3MnO3 as a function of the magnetization at (a) room temperature and (b) 77 K. 23 Fig. 2-10 Ligand-field splitting of five-fold degenerate atomic 3d levels into lower t2g and higher eg levels. Jahn-Teller distortion of MnO6 octahedron further lofts each degeneracy as shown in the figure. 24 Fig. 2-11 The t2g, eg, and p orbitals. 25 Fig. 2-12 Schematic features of the double exchange mechanism. 28 Fig. 2-13 Antiferromagnetic super-exchange interaction in a linear metal-oxygen-metal system. 30 Fig. 2-14 Possible magnetic structure of the manganites. The circles represent manganese ions, and the sign indicates the direction of the projection of the spin along the z-axis. 32 Fig. 2-15 ABO3 ferroelectric perovskite unit cell. 35 Fig. 2-16 Hysteresis loop of a ferroelectric material. 36 Fig. 3-1 Side view of the VT Beam Deflection AFM 25. 46 Fig. 3-2 Schematic setup diagram for liquid N2 cooling. 47 Fig. 4-1 (a) θ-2θ scans of all LSMO thin films on STO, and (b) Phi scans of the (1 0 1) peak of 90-nm-thick LSMO film. 51 Fig. 4-2 The AFM images of (a) 5 nm, (b) 10 nm, (c) 30 nm, (d) 60 nm, and (e) 90 nm thick LSMO films. 52 Fig. 4-3 Temperature-dependent magnetization curve of LSMO films varying thickness from 5 to 90 nm. 53 Fig. 4-4 In-plane and Out-of-plane lattice parameter (a, c), Tc, Tp and TMR as a function of LSMO film thickness. 55 Fig. 4-5 Tmeperature-dependent resistiity, ρ(T), curves of thickness-dependent LSMO films. 55 Fig. 4-6 XPS spectra of Mn 2p electrons in LSMO films with a thickness of (a) 30nm, (b) 10nm, and (c) 5nm. 56 Fig. 4-7 The conductive AFM images of LSMO films with a thickness of (a) 30nm, (b) 10nm, and (c) 5nm. 58 Fig. 4-8 Temperature dependence of MR ratio obtained at magnetic field of 3 T. 58 Fig. 4-9 The Arrhenius plots of resistivity against the reciprocal of square root of temperature of the 5-nm-thick film measured at 0 and 3 T. 59 Fig. 4-10 M(T) curve of 5-nm-thick film measured with a magnetic field = 0.2 and 3 T. 61 Fig. 4-11 The AFM and conductive AFM images of 5-nm-thick LSMO film measured without applying magnetic field at T = (a) RT, (b) 115 K and (c) 90 K, respectively. (d) The enlarged part of (c) by a scan size of 250*250 nm2. The light and black regions represent the metallic domains and insulative matrix, respectively. 63 Fig. 4-12 The relationship between the volume fractions of the metallic domains and the measured temperature. 64 Fig. 5-1 (a) The θ-2θ scan of XRD taken from a series of the LSMO films grown on STO and (b) phi-scan of the LSMO film and STO substrate, respectively. 69 Fig. 5-2 (a) The θ-2θ scan of XRD taken from a series of the LSMO films grown on LAO and (b) phi-scan of the LSMO film and LAO substrate, respectively. 69 Fig. 5-3 Lattice parameters for La1-xSrxMnO3 crystals at room temperature. 70 Fig. 5-4 The temperature-dependent magnetization curves for LSMO films deposited on (a) STO and (b) LAO substrate, respectively, with an applied field of 500 Oe. 71 Fig. 5-5 The temperature-dependent resistivity of LSMO films deposited on (a) STO and (b) LAO substrate, respectively, without applying magnetic field. 72 Fig. 5-6 The magneto-resistance (MR) effect obtained at magnetic field of 1 and 3 Tesla for films grown on (a) STO and (b) LAO. 74 Fig. 6-1 (a) the θ-2θ scan of XRD taken from all the samples, and (b) phi scans of the (1 0 1) peak of PZT, LSMO and STO in sample 200/40, respectively. 80 Fig. 6-2 The temperature-dependent magnetization curves of sample 200/10. 82 Fig. 6-3 The temperature-dependent magnetization curves of sample 200/20. 82 Fig. 6-4 The temperature-dependent magnetization curves of sample 200/40. 83 Fig. 6-5 The magnetic hysteresis loops of sample 200/10 measured at T = 10 K in FC. The loops were normalized by the saturation magnetization value. 85 Fig. 6-6 The magnetic hysteresis loops of sample 200/20 measured at T = 10 K in FC. 86 Fig. 6-7 The magnetic hysteresis loops of sample 200/40 measured at T = 10 K in FC. 86 Fig. 6-8 The P-E hysteresis loops of sample (a) 200/10, (b) 200/20, and (c) 200/40, respectively, with an external applied voltage Va = + 7V. 88 Fig. 6-9 The M-H loops of 200/10 sample measured at T = 10 K in ZFC, in which the PZT layer was polarized with an external applied voltage Va = 0, +7V, and -7V, respectively. 89 Fig. 7-1 (a) X-ray diffraction of the LSMO/PZT/LSMO trilayers. (b) The XRD result within 2θ= 46 o ~ 48 o. (c) Phi scans of the (1 0 1) peak of PZT, LSMO and STO, respectively. 94 Fig. 7-2 Temperature-dependent magnetization curves for (a) sample 30/200/30 and (b) 10/200/10 with PZT polarized at V = 0V, -7V and +7V, respectively. 95 Fig. 7-3 XRD results of (a) LSMO(10 nm)/PZT/STO and PZT/LSMO(10 nm)/STO and (b) LSMO(30 nm)/PZT/STO and PZT/LSMO(30 nm)/STO. 97 Fig. 7-4 The differentiation value of the magnetization, d(M)/d(T), vs. temperature. 98 Fig. 7-5 The PE hysteresis loops of sample (a) 30/200/30 and (b) 10/200/10, respectively. 100 Fig. 7-6 The magnetic loops measured at T =10K in FC for sample (a) 30/200/30 and (b) 10/200/10 with PZT polarized at V = 0V, -7V and +7V, respectively. 100 Fig. 7-7 The magnetic loops of (a) 30/200/30 and (b) 10/200/10 display the magnetic loop measured at T =200 and 150 K, respectively. 101 Fig. 7-8 The magnetic loops of sample 10/200/10 in ZFC measured at T = 10 K, in which the PZT layer was polarized at V = 0 V, and -7V, respectively. 102

    [1] J. G. Bednorz and K. A. Muller, Z. Phys. B 64, 189 (1986).
    [2] M. Hase, I. Terasaki, and K. Uchinokura, Phys. Rev. Lett. 70, 3651 (1993).
    [3] S. Taniguchi, T. Nishikawa, Y. Yasui, K. Kobayashi, M. Sato, T. Nishioka, M. Kontani, and K. Sano, J. Phys. Soc. Japan 64, 2758 (1995).
    [4] M. Uehara, T. Nagata, J. Akimitsu, H. Takahashi, N. Mori, and K. Kinoshita, J. Phys. Soc. Japan 65, 2764 (1996).
    [5] R. M. Kusters, J. Singleton, D. A. Keen, R. McGreevy, and W. Hayes, Physica B 155, 362 (1989).
    [6] R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Lett. 71, 2331 (1993).
    [7] K. Chahara, T. Ohno, M. Kasai, and Y. Kozono, Appl. Phys. Lett. 63, 1990 (1993).
    [8] S. Jin, T. H. Tiefel, M. Mc Cormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science 264, 413 (1994).
    [9] A. Asamitsu, Y. Moritomo, Y. Tomioka, T. Arima, and Y. Tokura, Nature (London) 373, 407 (1995).
    [10] Y.Tokura, Y. Tomioka, H. Kuwahara, A. Asamitsu, Y. Moritomo, and M. Kasai, J. Appl. Phys. 79, 5288 (1996).
    [11] C. Zener, Phys. Rev. 82, 403 (1951).
    [12] P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).
    [13] P.-G. de Genes, Phys. Rev. 118, 141 (1960).
    [14] J. H. V. Vleck, J. Chem. Phys. Suppl. 31, 14S (1960).
    [15] J. Kanamori, J. Appl. Phys., 31, 145 (1960).
    [16] K. I. kugel and D. I. Khomskii, Sov. Phys. – Jetp 37, 725 (1973).
    [17] E. O. Wollan and W. C. Koehler, Phys. Rev. 100, 545 (1955).
    [18] J. B. Goodenough, Phys. Rev. 100, 564 (1955).
    [19] M. Cyrot and C. Lyon-Caen, J. Phys. (France) 36, 253 (1975).
    [20] Y. Ito and J. Akimitsu, J. Phys. Soc. Jpn. 40, 1333 (1976).
    [21] J. Akimitsu and Y. Ito, J. Phys. Soc. Jpn. 40, 1621 (1976).
    [22] A. J. Millis, B. I. Shraiman, and R. Mueller, Phys. Rev. Lett. 77, 175 (1996).
    [23] M. Kataoka and M. Tachiki, Physical B 237, 24 (1997).
    [24] J. Z. Sun, L. Krusin-Elbaum, A. Gupta, Gang Xiao, P. R. Duncombe, and S. S. P. Parkin, IBM J. Res. Dev. 42, 89 (1998).
    [25] G. H. Jonker and J. H. Van Santen, Physica 16 337 (1950)
    [26] Y. Morimoto, A. Asamitsu, H. Kuwahara, and Y. Tokura, Nature (London) 380, 141 (1996).
    [27] K. I Kobayashi, T. Kimura, H. Sawada, K. Terakura, and Y. Tokura, Nature 395, 677 (1998).
    [28] B. Mercey, P.A. Salvador, W. Prellier, T.D. Doan, J. Wolfman, J.F. Hamet, M. Hervieu and B. Raveau, J. Mat. Chem. 9, 233 (1999).
    [29] G. Srinivasan, E. T. Rasmussen, J. Gallegos, R. Srinivasan, Yu. I. Bokhan, and V. M. Laletin, Phys. Rev. B 64, 214408 (2001), G. Srinivasan. E. T. Rasmussen, and B. Levin, ibid 65, 134402 (2002).
    [30] K. Mori and M. Wuttig, Appl. Phys. Lett. 81, 100 (2002).
    [31] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rade, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).
    [32] N. A. Hill, J. Phys. Chem. B 104, 6694 (2000), A Filippetti and N. A. Hill, Phys. Rev. B 65, 195120 (2002).
    [33] H. Zheng, J. Wang, S. E. Lofland, W. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salmanca- Riba, S.R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh, Science 303, 661 (2004).
    [34] C.-W. Nan, N. Cai, L. Liu, J. Zhai, Y. Ye, and Y. Lin, J. Appl. Phys. 94, 5930 (2003), G. Liu, C-W. Nan, N. Cai, and Y. Lin, ibid. 95, 2660 (2004).
    [35] P. Murugavel, D. Saurel, W. Prellier, Ch. Simon, and B. Raveau, Appl. Phys. Lett. 85, 4424 (2004).
    [36] X. Hong, A. Posadas, and C. H. Ahn, Appl. Phys. Lett. 86, 142501 (2005).
    [37] M. P. Singh, W. Prellier, Ch. Simon, and B. Raveau, Appl. Phys. Lett. 87, 022505 (2005)
    [38] A. F. M. dos Santos, A. K. Cheetham, W. Tian, X. Q. Pan, Y. Jia, N. J. Murphy, J. Lettieri, and D. G. Schlom, Appl. Phys. Lett. 84, 91 (2004).
    [39] A. Sharan, J. Lettieri, Y. Jia, W. Tian, X. Q. Pan, D. G. Schlom, and V. Gopalan, Phys. Rev. B 69, 214109 (2004).
    [40] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).
    [41] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature 426, 55 (2003).
    [42] N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S.-W. Cheong, Nature 429, 392 (2004).
    [43] J. Van Suchtelen, Philips Res. Rep. 27, 28 (1972).
    [44] 鄭振東,“實用磁性材料”,全華科技圖書股份有限公司(1999)。
    [45] 近角聰信著,張煦、李學養譯,“磁性物理學”,聯經出版(1982)。
    [46] 劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚,“機械材料學”,全華科技圖書股份有限公司(1996)。
    [47] William F. Smith著,李春穎、許煙明、陳忠仁譯,“材料科學與工程”,高立圖書有限公司(1994)。
    [48] C. D. Stanciu, A. V. Kimel, F. Hansteen, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, Phys. Rev. B 73, 220402(R) (2006).
    [49] W.H. Meiklejohn, C.P. Bean, Phys. Rev. 102, 1413 (1956).
    [50] C.P. Bean, in: C.A. Neugebauer, J.B. Newkirk, D.A. Vermilyea (Eds.), Structure and Properties of Thin Films, Wiley, New York, p. 331, (1960).
    [51] AFM Properties: K. Fukamichi, J. Magn. Soc. Japan 21, 1062 (1997).
    [52] R. Jungblut, R. Coehoorn, M.T. Johnson, J. an de Stegge, and A. Reinders, J. Appl. Phys. 75, 6659 (1994).
    [53] M. Takahashi, A. Yanai, S. Taguchi, and T. Suzuki, Jpn. J. Appl. Phys. 19,1093 (1980).
    [54] A.P. Malozemoff, Phys. Rev. B 35, 3679 (1987).
    [55] E. Verwey, P. Haaijman, F. Romeijn, and G. van Oosterhout, Philips Res. Rep. 5, 173 (1950).
    [56] S. Jin, M. McCormack, T. Tiefel, and R. Ramesh, J. Appl. Phys. 76, 6929 (1994).
    [57] S. Jin, T. Tiefel, M. McCormack, R. Fastnacht, R. Ramesh, and L. Chen, Science 264, 413 (1994).
    [58] G. Jonker and J. van Santen, Physica (Amsterdam) 16, 337 (1950).
    [59] J. H. van Santen and G. Jonker, Physica (Amsterdam) 16, 599 (1950).
    [60] Y. Tokura, A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and N. Furukawa, J. Phys. Soc. Jpn. 63, 3931 (1994).
    [61] G. Jonker and J. van Santen, Physica (Amsterdam) 19, 120 (1953).
    [62] G. Jonker, Physica (Amsterdam) 20, 1118 (1954).
    [63] J. Volger, Physica (Amsterdam) 20, 49 (1954).
    [64] C. Zener, Phys. Rev. 2, 403 (1951).
    [65] A. J. Millis, B. I. shraiman, and R. Mueller, Phys. Rev. Lett. 77, 175 (1996).
    [66] P. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).
    [67] N. Ashcroft and N. Mermin, Solid State Physics (Saunders College Publishing, Philadelphia, 1976).
    [68] S. Satpathy, Z. S. Popovic, and F. R. Vukajlovic, J. Appl. Phys. 79, 4555 (1996).
    [69] E. O. Wollan and W. C. Koehler, Phys. Rev. 100, 545 (1955)
    [70] S. Yunoki, J. Hu, A. L. Malvezzi, A. Moreo, N. Furukawa and E. Dagotto, Phys. Rev. Lett. 80, 845 (1998)
    [71] E. L. Nagaev, JETP Lett. 16, 394 (1972).
    [72] E. L. Nagaev, Phys. Uspekhi 39, 781 (1998).
    [73] D. I. Khomskii and G. A. Sawatzky, Solid State Commun. 102, 87 (1997).
    [74] M. Uehara, S. Mori, C. H. Chen, and S. W. Cheong, Nature (London) 399, 560 (1999).
    [75] C. Ranner, G. Aeppli, B. G. Kim, Y. A. Soh, and S. W. Cheong, Nature (London) 416, 518 (2002).
    [76] M. Lines and A. Glass, “Principles and Applications of Ferroelectrics and Pelated Devices”, Clarendon Press, Oxford, 87 (1977).
    [77] B. Jaffe, W. R. Cook Jr, and H. Jaffe, “Piezoelectric Ceramics”, Academic Press, London (1971).
    [78] A. E. Feuersanger, “Thin Film Dielectrics”, edited by F. Vratny, Electrochem. Soc. 209, NY (1969).
    [79] F. A. Miranda, Integr. Ferroelectr. 22, 789 (1998).
    [80] C. Paz de Ataujo, L. McMillan, V. Joshi, N. Solayappan, M. Lim, K. Arita, N. Morlwaki, H. Hirano, Takaaki, Y. Shimadal, T. Sumil, E. Fujiil, and T. Otsuki, IEEE Solid-State Circuits Conference. Digest of Technical Papers. 1464, 268 (2000).
    [81] K. L. Saenger, A. Grill, and D. E. Kotecki, J. Appl. Phys. 83, 802 (1998).
    [82] C. L. Hom, S. M. Pilgrim, N. Shankar, K. Bridger, M. Massuda, and S. R. Winzer, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 41, 542 (1994).
    [83] R. Takayama, Y. Tomita, K. Lijima, and I. Ueda, J. Appl. Phys. 61, 411 (1987).
    [84] G. Subramanyam, F. Van Keuls, and F. A. Miranda, IEEE Microwave Guided Wave Letters 8, 78 (1998).
    [85] H. Schmid, Ferroelectrics 162, 317 (1994).
    [86] V. E. Wood and A. E. Austin, In Magnetoelectric Interaction Phenomena in Crystals; A. J. Freeman, H. Schmid, Eds.; Gordon and Breach: Newark, NJ, (1975).
    [87] G. A. Smolenskii and I. E. Chupis, Sov. Phys.—Usp. 25, 475 (1982).
    [88] G. A. Smolenskii, A. I. Agranovskaya, and V. A. Isupov, Sov. Phys.—Solid State 1, 149 (1959).
    [89] Y. N. Venevtsev,V. V. Gagulin, and I. D. Zhitomirsky, Ferroelectrics 73, 221 (1987).
    [90] G. A. Smolenskii, V. A. Bokov, V. A. Isupov, N. N. Krainik, and G. H. Nedlin, Helv. Phys. Acta 41, 1187 (1968).
    [91] Y. N. Venevtsev and V. V. Gagulin, Ferroelectrics 162, 23 (1994).
    [92] S. M. Skinner, IEEE Trans. Parts, Mater. Packaging 6, 68 (1970).
    [93] H. Schmid, Int. J. Magn. 4, 337 (1973).
    [94] K. Aizu, Phys. Rev. B 2, 754 (1970).
    [95] F. Kubel and H. Schmid, Acta Crystallogr. B 46, 698 (1990).
    [96] S. V. Kizelev, R. P. Ozerov, and G. S. Zhdanov, Sov. Phys.—Dokl. 145, 1255 (1962).
    [97] M. B. Salamon and M. Jaime, Rev. Mod. Phys., 73, 583 (2001).
    [98] A. J. Millis, Nature (London), 392, 147 (1998).
    [99] S. Mathews, R. Ramesh, T. Venkatesan, and J. Benedetto, Science 276, 238 (1997).
    [100] S. Yuasa, T. Nagahama, and Y. Suzuki, Science 297, 234 (2002).
    [101] H. Q. Yin, J. -S. Zhou, and J. B. Goodenough, Appl. Phys. Lett. 77, 714 (2000).
    [102] C. Zener, Phys. Rev. 81, 440 (1951).
    [103] K. S. Takahashi, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 79, 1324, (2001).
    [104] P. Padhan and R. C. Budhani, Phys. Rev. B 67, 024414 (2003).
    [105] R. A. Rao, D. Lavric, T. K. Nath, C. B. Eom, L. Wu, and F. Tsui, Appl. Phys. Lett. 73, 3294 (1998).
    [106] Y. H Chen, Y. S Lo, T. B Wu, F. C Chang, and C. C Chi, Electrochem. Solid-State Lett. 9, J9 (2006).
    [107] X. J. Chen, H. U. Habermeier, H. Zhang, G. Gu, M. Varela, J. Santamaria, and C. C. Almasan, Phys. Rev. B 72, 104403 (2005).
    [108] A. J. Millis, T. Darling, and A. Migliori, J. Appl. Phys. 83, 1588(1998).
    [109] J. Z. Sun, D. W. Abraham, R. A. Rao, and C. B. Eom, Appl. Phys. Lett. 74, 3017 (1999).
    [110] M. Bibes, Ll. Balcells, S. Valencia, and J. Fontcuberta, Phys. Rev. Lett. 87, 067210 (2001).
    [111] M. Bibes, S. Valencia, Ll. Balcells, B. Martinez, J. Fontcuberta, M. Wojcik, S. Nadolski, and E. Jedryka, Phys. Rev. B. 66, 134416 (2002).
    [112] F. Tsui, M. C. Smoak, T. K. Nath, and C. B. Eom, Appl. Phys. Lett. 76, 2421 (2000).
    [113] J. Zhang, H. Tanaka, T. Kanki, J-H Choi, and T Kawai, Phys. Rev. B. 64, 184404 (2001).
    [114] P. Sheng, B. Abeles, and Y. Arie, Phys. Rev. Lett. 31, 44 (1973).
    [115] M. Koubaa, A. M. Haghiri-Gosnet, R. Desfeux, Ph. Lecoeur, W. Prellier, and B. Mercey, J. Appl. Phys. 93, 5277 (2003).
    [116] R.J. Kennedy, P.A. Stampe, E. Hu, P. Xiong, and Y. Xin, Appl. Phys. Lett. 84, 2832 (2004).
    [117] A. Biswas, M. Rajeswari, R. C. Srivastava, T. Venkatesan, R. L. Greene, Q. Lu, A. L. de Lozanne, and A. J. Millis, Phys. Rev. B 63, 184424 (2000).
    [118] J. Klein, J. B. Philipp, G. Carbone, A. Vigliante, L. Alff, and R. Gross, Phys. Rev. B 66, 052414 (2002).
    [119] Z. G. Ye and M. Dong, J. Appl. Phys. 87, 2312 (2000).
    [120] M. Angeloni, G. Balestrino, N. G. Boggio, P. G. Medaglia, P. Orgiani, and A. Tebano, J. Appl. Phys. 96, 6387 (2004).
    [121] M. Bowen, M. Bibes, A. Barthèlèmy, J.-P. Contour, A. Anane, Y. Lematre, and A. Fert, Appl. Phys. Lett. 82, 233 (2003).
    [122] C. N. R. Rao and A. K. Cheetham, Science 276, 911 (1997).
    [123] A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995).
    [124] M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001).
    [125] A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B 51, 14103 (1995).
    [126] F. S. Razavi, G. Gross, H.-U. Habermeier, O. Lebedev, S. Amelinckx, G. Van Tendeloo, and A. Vigliante, Appl. Phys. Lett. 76, 155 (2000).
    [127] X. J. Chen, S. Soltan, H. Zhang, and H.-U. Habermeier, Phys. Rev. B 65, 174402 (2002).
    [128] A. P. Ramirez, J. Phys.: Condens. Matter 9, 8171 (1997).
    [129] H. Kawano, R. Kajimoto, M. Kubota, and H. Yoshizawa, Phys. Rev. B 53, R10709 (1997).
    [130] D. E. Cox, T. Iglesias, E. Moshopoulou, K. Hirota, K. Takahashi, and Y. Endoh, Phys. Rev. B 64, 024431 (2001).
    [131] X. J. Chen, H.-U. Habermeier, H. Zhang, G. Gu, M. Varela, J. Santamaria, and C. C. Almasan, Phys. Rev. B 72, 104403 (2005).
    [132] J. Zhang, H. Tanaka, T. Kanki, J-H Choi, and T Kawai, Phys. Rev. B. 64, 184404 (2001).
    [133] K. H. Ahn, T. Lookman, and A. R. Bishop, Nature (London) 428, 401 (2004).
    [134] S. Yuasa, T. Nagahama, and Y. Suzuki, Science 297, 234 (2002).
    [135] S. Mathews, R. Ramesh, T. Venkatesan, and J. Benedetto, Science 276, 238 (1997).
    [136] H. Q. Yin, J.-S. Zhou, and J. B. Goodenough, Appl. Phys. Lett. 77, 714 (2000).
    [137] A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995).
    [138] M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001).
    [139] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).
    [140] H. Schmid, Ferroelectrics 162, 317 (1994).
    [141] R. V. Chopdekar and Y. Suzuki, Appl. Phys. Lett. 89, 182506 (2006).
    [142] M. P. Singh, W. Prellier, L. Mechin, Ch. Simon and B. Raveau, J. Appl. Phys. 99, 24105 (2006).
    [143] A. P. Ramirez, J. Phys.: Condens. Matter 9, 8171 (1997).
    [144] X. J. Chen, H.-U. Habermeier and C. C. Almasan, Phys. Rev. B 68, 132407 (2003).
    [145] P. Pabhan and W. Prellier, Phys. Rev. B 71, 174419 (2005).
    [146] P. G. de Gennes, Phys. Rev. 118, 141 (1960).
    [147] S. Nafis, J. A. Woollam, Z. S. Shan, and D. J. Sellmyer, J. Appl. Phys. 70, 6050 (1991).
    [148] C. Zener, Phys. Rev. 81, 440 (1951).
    [149] J. Kanamori, J. Phys. Chem. Solids 10, 87 (1959).
    [150] R. Skomski, R. F. Sabiryanov, and S. S. Jaswal, J. Appl. Phys. 87, 5890 (2000).
    [151] C. H. Ahn, S. Gariglio, P. Paruch, T. Tybell, L. Antognazza, and J.-M Triscone, Science 284, 1152 (1999).
    [152] M. Bowen, M. Bibes, A. Barthèlèmy, J.-P. Contour, A. Anane, Y. Lematre, and A. Fert, Appl. Phys. Lett. 82, 233 (2003).
    [153] C. N. R. Rao, and A. K. Cheetham, Science 276, 911 (1997).
    [154] A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995).
    [155] M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001).
    [156] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).
    [157] A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B 51, 14103 (1995).
    [158] H. Schmid, Ferroelectrics 162, 317 (1994).
    [159] X. Hong, A. Posadas, A. Lin, and C. H. Ahn, Phys. Rev. B 68, 134415 (2003).
    [160] H. C. He, J. P. Zhou, J. Wang, and C. W. Nan, Appl. Phys. Lett. 89, 052904 (2006).
    [161] M. Ziese, A. Bollero, I. Panagiotopoulos, and N. Moutis, Appl. Phys. Lett. 88, 212502 (2006).
    [162] S. C. Ray, M. Algueró, J. Ricote, M. L. Calzada, C. Prieto, A. de Andrés, and M. Garcia-Hernández, Mater. Lett. 60, 1714 (2006).
    [163] S. I. Khartsev, P. Johnsson, and A. M. Grishin, J. Appl. Phys. 87, 2394 (2000).
    [164] L. J. Belenky, X. Ke, M. Rzchowski, and C. B. Eom, J. Appl. Phys. 97, 10J107 (2005).
    [165] Y. C. Liang, T. B. Wu, H. Y. Lee, and Y. W. Hsieh, J. Appl. Phys. 96, 584 (2004).
    [166] J. H. Liao, T. B. Wu, Y. T. Chen, and J. M. Wu, J. Appl. Phys. 101, 09M110 (2007).
    [167] M. Angeloni, G. Balestrino, N. G. Boggio, P. G. Medaglia, P. Orgiani, and A. Tebano, J. Appl. Phys. 96, 6387 (2004).
    [168] C. H. Ahn, S. Gariglio, P. Paruch, T. Tybell, L. Antognazza, and J.-M Triscone, Science 284, 1152 (1999).
    [169] M. Koubaa, A. M. Haghiri-Gosnet, R. Desfeux, Ph. Lecoeur, W. Prellier, and B. Mercey, J. Appl. Phys. 93, 5227 (2003).
    [170] C. Kwon, M. C. Robson, K. –C. Kim, J. Y. Gu, S. E. Lofland, S.M. Bhagat, Z. Trajanovic, M. Rajeswari, T. Venkatesan, A. R. Kratz, R. D. Gomez, and R. Ramesh, J. Magn. Magn. Mater. 172, 229 (1997).
    [171] T. Li, B. Wang, H. Dai, Y. Du, H. Yan, and Y. Liu, J. Appl. Phys. 98, 123505 (2005).
    [172] J. M. Daughton, A. V. Pohm, R. T. Fayfield, and C. H. Smith, J. Phys., D Appl. Phys. 32, R169 (1999).
    [173] J.-H. Park, E. Vescovo, H.-J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan, Nature (London) 392, 794 (1998).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE