簡易檢索 / 詳目顯示

研究生: 周成澤
論文名稱: 二次曲線V型光柵表面電漿生物感測晶片
Quadratic v-groove grating surface plasmon biosensor
指導教授: 李明昌
口試委員: 李國賓
嚴大任
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 65
中文關鍵詞: 表面電漿生物檢測
外文關鍵詞: surface plasmon, biosensor
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面電漿生物感測技術擁有比其他生物感測方法有更高的靈敏度,如今已經發展出很多不同的表面電漿生物感測方法。本論文主要是討論光柵式表面電漿感測方法。此方法最主要是藉由觀察反射頻譜的變化量,而去感測光柵表面物質的變異。我們利用Finite Difference Time Domain (FTDT)這個方法去模擬後發現改變光柵表面形貌會影響反射頻譜的特性,進而設計出二次曲線V型光柵,此種光柵比起傳統的矩形光柵在同樣深寬比下其反射頻譜的頻寬比較窄。經由我們實驗證實,擁有較窄頻寬的表面電漿感測晶片其系統的解析度較高,如此就可以偵測到更細微的訊號。接著我們整合微流道系統,將不同濃度的食鹽水注入晶片中測得我們晶片的敏感度(Sensitivity)為820(nm/RIU)。最後利用biotin-avidin這個生物流程去測試生物感測晶片的效能,測試結果顯示反射頻譜偏移量會隨著不同濃度的avidin溶液做線性的偏移,如此我們就可以輕易做生物檢測的定量分析。


    Surface plasmon for biosensing applications has high sensitivity. There are many types of surface plasmon biosensors today. We focus on the grating-based surface plasmon biosensors. The grating-based SP biosensor detects the biomolecule through interrogating the shift of reflection spectrum. By the simulation method of Finite Difference Time Domain (FTDT), we found that the bandwidth is generally related to the profile of the grating. A new grating-based surface plasmon biosensor is proposed. This surface plasmon grating featured by quadratic V-grooves showed a narrower spectral bandwidth, compared with conventional rectangular gratings with the same aspect ratio of the open trench. The experimental result confirmed improved sensor resolution. The sensitivity was measured to be 820 (nm/RIU) with various concentrations of salt solution. Real-time detection of avidin bound on biotin was presented.

    摘要................................................................................................Ⅰ Abstract..........................................................................................Ⅱ 致謝................................................................................................Ⅲ 目錄................................................................................................IV 第一章 緒論................................................................................1 1-1 前言............................................................................1 1-2 研究動機....................................................................2 1-3 論文架構....................................................................3 第二章 理論背景.........................................................................4 2-1 表面電漿....................................................................4 2-2 表面電漿晶體...........................................................8 2-3 表面電漿晶體於生物量測之原理............................9 第三章 元件模擬與設計...........................................................11 3-1 時域有限差分法.......................................................11 3-2 光柵表面形貌模擬..................................................20 3-3 QVG光柵最佳化模擬............................................21 第四章 元件製作.......................................................................29 4-1 QVG光柵製作流程...................................................29 4-2 流道製作流程..............................................................39 第五章 元件量測與分析..............................................................43 5-1實驗架構與量測方法...................................................43 5-2不同表面形貌之量測分析...........................................44 5-3 元件敏感度之測量分析..............................................50 5-4 biotin/avidin/streptavidin介紹......................................53 5-5 biotin/avidin/streptavidin量測分析..............................55 5-6 即時biotin/avidin檢體量測分析................................58 第六章 結論與未來展望..............................................................60 6-1結果與討論....................................................................60 6-2未來展望........................................................................61 參考文獻...........................................................................................62 附錄...................................................................................................65

    [1] R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Proc. Phys. Soc. London 18, 269-275 (1902).
    [2] U. Fano, "The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves)," J. Opt. Soc. Am. 31, 213–222 (1941).
    [3] R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874-881 (1957).
    [4] E. A. Stern and R. A. Ferrell, “Surface Plasma Oscillations of a Degenerate Electron Gas,” Phys. Rev. 120,130-136 (1960)
    [5] A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Zeitschrift fur Physik A Hadrons and Nuclei 216, 398–410 (1968)
    [6] 張勝雄, 戴朝義, “奈米電漿子波導元件於積體光學之應用,” 物理雙月刊(卅卷六期) , 2008.
    [7] X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter and Y. Sun , “Sensitive optical biosensors for unlabeled targets: A review,” ANALYTICA CHIMICA ACTA, vol. 620, pp. 8–26, 2008.
    [8] L. S. Jung, C.T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films, “LANGMUIR, Vol. 14 pp. 5636-5648, 1998.
    [9] B. K. Singh and A. C. Hillier, "Surface plasmon resonance imaging of biomolecular interactions on a grating-based sensor array," Analytical Chemistry, vol. 78, pp. 2009-2018, 2006.
    [10] M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. –W. Lee, S. K. Gray, R. G. Nuzzo and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” PNAS, vol. 103, pp. 17143–17148, 2006.
    [11] L. Pang, G. M. Hwang, B. Slutsky and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” APPLIED PHYSICS LETTERS, vol. 91, Article Number. 123112, 2007.
    [12] K. H. Yoon, M. L. Shuler and S. J. Kim, “Design optimization of nano-grating surface plasmon resonance sensors,” OPTICS EXPRESS, vol. 14, pp. 4842-4849, 2006.
    [13] C. Chen, J. A. Hutchison, P. Van Dorpe, R. Kox, I. De Vlaminck, H. Uji-i, J. Hofkens, L. Lagae, G. Maes, and G. Borghs, "Focusing Plasmons in Nanoslits for Surface-Enhanced Raman Scattering," Small, vol. 5, pp. 2876-2882, 2009.
    [14] 吳民耀、劉威志, “表面電漿子理論與模擬,” 物理雙月刊(廿八卷二期), 2006.
    [15] H. Gao, W. Zhou, and T. W. Odom “Plasmonic Crystals: A Platform to Catalog Resonances from Ultraviolet to Near-Infrared Wavelengths in a Plasmonic Library, ” Adv. Funct. Mater, vol. 20, pp. 529-539, 2010
    [16] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas and Propagation, Vol. 14, pp. 302-307, 1966.
    [17] Topac Inc, “Relationship between Salt Solution and Sugar Concentration (Brix) and refractive index at 20°C,” http://www.topac.com.
    [18] Thermo Scientific, “ Avidin - Biotin Interaction, ” http://www. piercenet.com.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE