簡易檢索 / 詳目顯示

研究生: 游可溱
You, Ke-Jhen
論文名稱: 探討外部可調式的生物放大器在大腸桿菌內的作用
Study on the mechanism of externally adjustable biological amplifier in Escherichia coli
指導教授: 徐邦達
Hsu, Ban-Dar
口試委員: 陳博現
Chen, Bor-Sen
李曉青
Lee, Hsiao-Ching
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 49
中文關鍵詞: 合成生物學
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 合成生物學的其中一個目標在於利用已定義的基因元件組合成可作用的生物性系統。在本研究中,我們利用生物元件組裝出一個可調整型的生物性放大器,將其放入大腸桿菌內,並使用酵素免疫分析儀 (ELISA reader) 偵測其表現。
    放大器內部元件的啓動子(promoters)與核醣體結合位點(ribosome binding sites)是從有良好定義的相關資料庫中所選取,並且選擇綠螢光蛋白(GFP)做為此基因電路實驗的報導蛋白。可調整型放大器的主要功用是調整誘導物IPTG和誘導物aTc來達到控制報導蛋白的最終生產濃度,其中IPTG的濃度是作為生物放大基因電路的輸入訊號,而aTc則是用於調整基因電路的放大倍率。藉由完整的線性方程式,我們能更準確的預測最終輸出迴路之綠螢光蛋白的放大倍率和綠螢光蛋白的濃度。這樣的生物性放大器未來可提供一個關於控制蛋白疫苗定量生產的功能。


    Content ABSTRACT………………………………………………………………4 INTRODUCTION……………………………………………………6 RESULT……………………………………………………………………8 DISSCUSSION……………………………………………………15 FIGURE…………………………………………………………………17 MATERIALS AND METHODS…………………………44 REFERENCE…………………………………………………………48

    Reference

    1. Benner SA & Sismour AM (2005) Synthetic biology. Nat Rev Genet 6(7):533-543.
    2. Salazar JD, et al. (2009) Prediction of photoperiodic regulators from quantitative gene circuit models. Cell 139(6):1170-1179.
    3. Nevozhay D, Adams RM, Van Itallie E, Bennett MR, & Balazsi G (2012) Mapping the environmental fitness landscape of a synthetic gene circuit. PLoS Comput Biol 8(4):e1002480.
    4. Wall ME, Hlavacek WS, & Savageau MA (2003) Design principles for regulator gene expression in a repressible gene circuit. J Mol Biol 332(4):861-876.
    5. Huang D, Holtz WJ, & Maharbiz MM (2012) A genetic bistable switch utilizing nonlinear protein degradation. Journal of biological engineering 6(1):9.
    6. Strasser M, Theis FJ, & Marr C (2012) Stability and multiattractor dynamics of a toggle switch based on a two-stage model of stochastic gene expression. Biophys J 102(1):19-29.
    7. Warren PB & ten Wolde PR (2005) Chemical models of genetic toggle switches. J Phys Chem B 109(14):6812-6823.
    8. Stricker J, et al. (2008) A fast, robust and tunable synthetic gene oscillator. Nature 456(7221):516-519.
    9. Kim J & Winfree E (2011) Synthetic in vitro transcriptional oscillators. Mol Syst Biol 7:465.
    10. Bujdoso N & Davis SJ (2013) Mathematical modeling of an oscillating gene circuit to unravel the circadian clock network of Arabidopsis thaliana. Front Plant Sci 4:3.
    11. Wang B, Barahona M, & Buck M (2013) A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals. Biosens Bioelectron 40(1):368-376.
    12. Mitrophanov AY & Groisman EA (2010) Response acceleration in post-translationally regulated genetic circuits. J Mol Biol 396(5):1398-1409.
    13. Wang X, Chen X, & Yang Y (2012) Spatiotemporal control of gene expression by a light-switchable transgene system. Nat Methods 9(3):266-269.
    14. Chappell J, Jensen K, & Freemont PS (2013) Validation of an entirely in vitro approach for rapid prototyping of DNA regulatory elements for synthetic biology. Nucleic acids research 41(5):3471-3481.
    15. Ceroni F, Furini S, & Cavalcanti S (2010) A computational model of gene expression in an inducible synthetic circuit. Pac Symp Biocomput:409-420.
    16. Chen BS & Wu WS (2008) Robust filtering circuit design for stochastic gene networks under intrinsic and extrinsic molecular noises. Math Biosci 211(2):342-355.
    17. De Rubertis G & Davies SW (2003) A genetic circuit amplifier: design and simulation. IEEE Trans Nanobioscience 2(4):239-246.
    18. Pokhilko A, et al. (2012) The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops. Mol Syst Biol 8:574.
    19. Bollenbach T & Kishony R (2009) Quiet gene circuit more fragile than its noisy peer. Cell 139(3):460-461.
    20. Rue P & Garcia-Ojalvo J (2011) Gene circuit designs for noisy excitable dynamics. Math Biosci 231(1):90-97.
    21. Chen BS & Chang YT (2008) A systematic molecular circuit design method for gene networks under biochemical time delays and molecular noises. BMC Syst Biol 2:103.
    22. Dragosits M, Nicklas D, & Tagkopoulos I (2012) A synthetic biology approach to self-regulatory recombinant protein production in Escherichia coli. Journal of biological engineering 6(1):2.
    23. Wang B, Kitney RI, Joly N, & Buck M (2011) Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nat Commun 2:508.
    24. Saeidi N, et al. (2011) Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen. Mol Syst Biol 7:521.
    25. Bansal K, Yang K, Nistala GJ, Gennis RB, & Bhalerao KD (2010) A positive feedback-based gene circuit to increase the production of a membrane protein. Journal of biological engineering 4:6.
    26. Ding M, et al. (2012) The radiation dose-regulated AND gate genetic circuit, a novel targeted and real-time monitoring strategy for cancer gene therapy. Cancer Gene Ther 19(6):382-392.
    27. Nevozhay D, Zal T, & Balazsi G (2013) Transferring a synthetic gene circuit from yeast to mammalian cells. Nat Commun 4:1451.
    28. Huh JH, Kittleson JT, Arkin AP, & Anderson JC (2013) Modular Design of a Synthetic Payload Delivery Device. ACS Synthetic Biology:130306085642000.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE