簡易檢索 / 詳目顯示

研究生: 喻韜
Yu, Tao
論文名稱: 利用醣苷內切酶製備A型流感病毒之去醣化凝血素蛋白
Preparation of deglycosylated Hemagglutinin of Influenza A Virus through Soluble and Immobilized Endoglycosidases
指導教授: 呂平江
Lyu, Ping-Chiang
馬徹
Ma, Che
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 81
中文關鍵詞: 去醣化凝血素蛋白
外文關鍵詞: deglycosylate, Hemagglutinin
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蛋白質的醣化在真核生物體中是一種常見的修飾,同時對蛋白質結構與功能也很重要。
    因此科學界企圖找出蛋白質醣化與疾病之間的關聯性,以期望在人類的疾病治療上開啟一個
    新方向。
    然而就結晶學解析蛋白質結構的角度而言,附著於蛋白質的醣類導致了醣蛋白的結晶不
    易。因此本篇論文的目標在於快速大量的純化不同的醣苷內切酶,在受質醣蛋白摺疊完好的
    狀態下應用於移除蛋白質上的醣類,並發展理想的醣苷內切酶固定化方式,以利於分離酵素
    與醣蛋白受質。
    在實驗中,我們利用大腸桿菌表現醣苷內切酶F1、F2、F3、H 及N-醣酰胺酶F 用於進
    行去醣化反應。受測受質則採用兩種不同品系A 型流行性感冒病毒的凝血素蛋
    (hemagglutinin),並分別以兩種不同的細胞株表現,使凝血素蛋白帶有兩種不同類型的多醣。
    大致的反應效率以鈉十二烷基硫酸鹽聚丙烯酰胺凝膠電泳法觀察,接著受質的整體分子量變
    化則透過基質輔助雷射脫附游離飛行時間質譜儀偵測,最後針對個別醣化位的去醣反應效率
    則以液相層析串聯式質譜儀決定。
    帶有high mannose type glycan 之凝血素蛋白去醣化反應在可溶性及固定化醣苷內切酶H
    的作用下,呈現完全的反應性;相較之下帶有complex type glycan 凝血素蛋白去醣化反應即
    使在可溶性醣苷內切酶F1、F2 及F3 的作用下,仍呈現反應不完全的現象;N-醣酰胺酶F 則
    對兩種不同的醣皆呈現類似程度的反應性。比對不同反應受質之間的差異,我們得知complex
    type glycan 凝血素蛋白去醣化反應不完全可能源自於complex type glycan 或是蛋白質構型對
    醣苷內切酶所造成的立體障礙。
    受質蛋白由於在原始摺疊的狀況下進行去醣化反應,所以其構型不會發生改變,因此可
    利用此種反應所產生的蛋白進行結晶學、免疫學、細胞生理學等進一步的研究。


    Glycosylation is one of the common modifications in eukaryotic cell and is important for protein
    structure and function. Therefore, scientists have been tring to figure out the connection between
    protein glycosylation and human diseases.
    However, for protein crystallography, the glycans on the protein make it more difficult to get
    glycoprotein crystals. Our goal is to utilize endoglycosidases to quickly and massively produce
    deglycosylated glycoprotein under native condition. Furthermore, a suitable method was applied
    to immobilize these endoglycosidases for rapid isolation of the deglycosylated glycoproteins.
    In our experiments, we cloned the endoglycosidase F1, F2, F3 and peptide-N-glycosidase F from
    Elizabethkingia meningosepticum and endoglycosidase H from Streptomyces plicatus. All the
    endoglycosidase were expressed in E. coli expression system. We adopted two strains of Influenza
    A hemagglutinin (HA) as the glycoprotein substrates. Each of HA proteins was expressed by two
    different cell type individually in order to generate identical protein with different glycan form.
    Three methods were used to exam the deglycosylation reaction level. First, the deglycosylation of
    glycoprotein makes protein band down shifted in SDS-PAGE analysis. Second, the exactly
    molecular weight decreasing due to deglycosylation is measured by MALDI-TOF Mass analysis.
    Finally, the deglycosylation efficiency on each glycosylation site is detected by glycopeptide
    analysis method with LC MS/MS.
    The deglycosylation result of high mannose type glycan HA is satisfactory, even when the reaction
    is performed with immobilized endoglycosidase H. However, the deglycosylation level of the
    complex type glycan HA is not enough by using endoglycosidases individually or several
    endoglycosidases at the same time. The results of two different type glycan substrates digested by
    peptide-N-glycosidase F were similar. We suggest that the uncompleted deglycosylation of
    different substrate of HA might be result from the steric barrier caused by bulky complex glycan or
    the conformation of substrate.
    Our goal is to find a general procedure to generate deglycosylated glycoproteins in a native
    condition that is suitable for protein crystallography and other biological research.

    Chapter 1 Introduction 1.1 Research background……………………………………………………..……...1 1.2 Protein glycosylation type ………………………………….……………………1 1.3 Endoglycosidase………………………………………………………………….3 1.4 Ribonuclease B…………………………………………………………………...7 1.5 Hemagglutinin of influenza A virus……………………………………………...7 Chapter 2 Materials and methods 2.1 Reagents………………………………………………….………………………9 2.2 Instruments……………………………………………………………..……….10 2.3 Construction of endoglycosidase expression plasmids …………………...……11 2.4 Endoglycosidase Expression and Purification …………………………………12 2.4.1 Purification of Endo F1 or Endo H ………………….…...…………….12 2.4.2 Purification of Endo F2 or Endo F3 ……………………………………13 2.4.3 Periplasmic fraction purification of PNGase F …………….……………14 2.4.4 Size exclusive chromatography ……………………………...………….14 2.5 N-Hydroxysuccinimide conjugation procedure …………………………….… 15 2.6 Substrate HA protein ………………………………………………………….. 15 2.7 Deglycosylation reaction 2.7.1 Activity test of Endo F1, Endo H and PNGase F by digesting RNase B…..16 2.7.2 Comparison of activity difference between our Endo F2, Endo F3 and commercial ones by digesting complex type glycan HA protein…………..16 2.7.3 Individual activity test of Endo F1, Endo F2 and Endo F3 by digesting complex type glycan HA protein………….…………………16 2.7.4 Deglycosylation of high mannose type glycan HA protein by Endo H……17 2.7.5 Deglycosylation of Complex type glycan HA protein by the combination of Endo F1, Endo F2 and Endo F3 ………………………… 17 2.7.6 Deglycosylation of Bri/59 HA protein by PNGase F …………..……….…18 2.8 Preparation of MASS sample ……………………………………….………… 18 Chapter 3 Result and Discussion 3.1 Enzyme purification and properties ……….…………………………………...19 3.2 The glycosylation difference between Bri/59 HA protein and Cal/07 HA protein …………………………………………….………..21 3.3 Activity test of Endo H, Endo F1 and PNGase F by digesting RNase B……….21 3.4 Comparison of activity difference between our Endo F2, Endo F3 and commercial ones by digesting complex type HA protein ………………… 22 3.5 Individual activity assay of Endo F1, Endo F2 and Endo F3 ……………….… 23 3.6 The complementary methods of SDS PAGE, MALDI-TOF and LC MS/ MS ………………………………………………………………..26 3.7 Deglycosylation of high mannose type glycan HA protein by Endo H……….. 27 3.8 Deglycosylation of Complex type glycan HA protein by the combination of Endo F1, Endo F2 and Endo F3……………………….……… 28 3.9 Deglycosylation of Bri/ 59 HA protein by PNGase F …..………………...……31 Chapter 4 Conclusion ………………………………………………………………32

    Anumula, K.R. (1993). Endo beta-N-acetylglucosaminidase F cleavage specificity
    with peptide free oligosaccharides. J Mol Recognit 6, 139-145.
    Blanchard, V., Frank, M., Leeflang, B.R., Boelens, R., and Kamerling, J.P. (2008).
    The structural basis of the difference in sensitivity for PNGase F in the
    de-N-glycosylation of the native bovine pancreatic ribonucleases B and BS.
    Biochemistry 47, 3435-3446.
    Dobson, C.M. (2003). Protein folding and misfolding. Nature 426, 884-890.
    Elder, J.H., and Alexander, S. (1982). endo-beta-N-acetylglucosaminidase F:
    endoglycosidase from Flavobacterium meningosepticum that cleaves both
    high-mannose and complex glycoproteins. Proc Natl Acad Sci U S A 79, 4540-4544.
    Gallagher, P.J., Henneberry, J.M., Sambrook, J.F., and Gething, M.J. (1992).
    Glycosylation requirements for intracellular transport and function of the
    hemagglutinin of influenza virus. J Virol 66, 7136-7145.
    Gam, L.H., and Latiff, A. (2005). SDS-PAGE electrophoretic property of human
    chorionic gonadotropin (hCG) and its beta-subunit. Int J Biol Sci 1, 103-109.
    Ghrayeb, J., Kimura, H., Takahara, M., Hsiung, H., Masui, Y., and Inouye, M. (1984).
    Secretion cloning vectors in Escherichia coli. EMBO J 3, 2437-2442.
    Grueninger-Leitch, F., D'Arcy, A., D'Arcy, B., and Chene, C. (1996). Deglycosylation
    of proteins for crystallization using recombinant fusion protein glycosidases. Protein
    Sci 5, 2617-2622.
    Kalisz, H.M., Hecht, H.J., Schomburg, D., and Schmid, R.D. (1990). Crystallization
    and preliminary X-ray diffraction studies of a deglycosylated glucose oxidase from
    Aspergillus niger. J Mol Biol 213, 207-209.
    Keil, W., Niemann, H., Schwarz, R.T., and Klenk, H.D. (1984). Carbohydrates of
    influenza virus. V. Oligosaccharides attached to individual glycosylation sites of the
    hemagglutinin of fowl plague virus. Virology 133, 77-91.
    Krokhin, O.V., Antonovici, M., Ens, W., Wilkins, J.A., and Standing, K.G. (2006).
    Deamidation of -Asn-Gly- sequences during sample preparation for proteomics:
    Consequences for MALDI and HPLC-MALDI analysis. Anal Chem 78, 6645-6650.
    Maley, F., Trimble, R.B., Tarentino, A.L., and Plummer, T.H., Jr. (1989).
    Characterization of glycoproteins and their associated oligosaccharides through the
    use of endoglycosidases. Anal Biochem 180, 195-204.
    Mir-Shekari, S.Y., Ashford, D.A., Harvey, D.J., Dwek, R.A., and Schulze, I.T. (1997).
    The glycosylation of the influenza A virus hemagglutinin by mammalian cells. A
    site-specific study. J Biol Chem 272, 4027-4036.
    Murrell, M.P., Yarema, K.J., and Levchenko, A. (2004). The systems biology of
    glycosylation. Chembiochem 5, 1334-1347.
    Neumann, G., Noda, T., and Kawaoka, Y. (2009). Emergence and pandemic potential
    of swine-origin H1N1 influenza virus. Nature 459, 931-939.
    Palazzo, A.F., Joseph, H.L., Chen, Y.J., Dujardin, D.L., Alberts, A.S., Pfister, K.K.,
    Vallee, R.B., and Gundersen, G.G. (2001). Cdc42, dynein, and dynactin regulate
    MTOC reorientation independent of Rho-regulated microtubule stabilization. Curr
    Biol 11, 1536-1541.
    Plummer, T.H., Jr., Phelan, A.W., and Tarentino, A.L. (1996). Porcine fibrinogen
    glycopeptides: substrates for detecting endo-beta-N-acetylglucosaminidases F2 and
    F3(1). Anal Biochem 235, 98-101.
    Plummer, T.H., Jr., and Tarentino, A.L. (1991). Purification of the
    oligosaccharide-cleaving enzymes of Flavobacterium meningosepticum.
    Glycobiology 1, 257-263.
    Reddy, A., Grimwood, B.G., Plummer, T.H., and Tarentino, A.L. (1998). High-level
    expression of the Endo-beta-N-acetylglucosaminidase F2 gene in E.coli: one step
    purification to homogeneity. Glycobiology 8, 633-636.
    Reeves, P.J., Callewaert, N., Contreras, R., and Khorana, H.G. (2002). Structure and
    function in rhodopsin: high-level expression of rhodopsin with restricted and
    homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line.
    Proc Natl Acad Sci U S A 99, 13419-13424.
    Robbins, P.W., Wirth, D.F., and Hering, C. (1981). Expression of the Streptomyces
    enzyme endoglycosidase H in Escherichia coli. J Biol Chem 256, 10640-10644.
    Roth, J. (2002). Protein N-glycosylation along the secretory pathway: relationship to
    organelle topography and function, protein quality control, and cell interactions.
    Chem Rev 102, 285-303.
    Shental-Bechor, D., and Levy, Y. (2008). Effect of glycosylation on protein folding: a
    close look at thermodynamic stabilization. Proc Natl Acad Sci U S A 105, 8256-8261.
    Skehel, J.J., Stevens, D.J., Daniels, R.S., Douglas, A.R., Knossow, M., Wilson, I.A.,
    and Wiley, D.C. (1984). A carbohydrate side chain on hemagglutinins of Hong Kong
    influenza viruses inhibits recognition by a monoclonal antibody. Proc Natl Acad Sci U
    S A 81, 1779-1783.
    Spiro, R.G. (2002). Protein glycosylation: nature, distribution, enzymatic formation,
    and disease implications of glycopeptide bonds. Glycobiology 12, 43R-56R.
    Tarentino, A.L., and Maley, F. (1969). The purification and properties of a
    beta-aspartyl N-acetylglucosylamine amidohydrolase from hen oviduct. Arch
    Biochem Biophys 130, 295-303.
    Tarentino, A.L., and Plummer, T.H., Jr. (1994). Substrate specificity of
    Flavobacterium meningosepticum Endo F2 and endo F3: purity is the name of the
    game. Glycobiology 4, 771-773.
    Tarentino, A.L., Quinones, G., Changchien, L.M., and Plummer, T.H., Jr. (1993).
    Multiple endoglycosidase F activities expressed by Flavobacterium meningosepticum
    endoglycosidases F2 and F3. Molecular cloning, primary sequence, and enzyme
    expression. J Biol Chem 268, 9702-9708.
    Tarentino, A.L., Quinones, G., and Plummer, T.H., Jr. (1995). Overexpression and
    purification of non-glycosylated recombinant endo-beta-N-acetylglucosaminidase F3.
    Glycobiology 5, 599-601.
    Trumbly, R.J., Robbins, P.W., Belfort, M., Ziegler, F.D., Maley, F., and Trimble, R.B.
    (1985). Amplified expression of streptomyces endo-beta-N-acetylglucosaminidase H
    in Escherichia coli and characterization of the enzyme product. J Biol Chem 260,
    5683-5690.
    Van Roey, P., Rao, V., Plummer, T.H., Jr., and Tarentino, A.L. (1994). Crystal structure
    of endo-beta-N-acetylglucosaminidase F1, an alpha/beta-barrel enzyme adapted for a
    complex substrate. Biochemistry 33, 13989-13996.
    Wang, C.C., Chen, J.R., Tseng, Y.C., Hsu, C.H., Hung, Y.F., Chen, S.W., Chen, C.M.,
    Khoo, K.H., Cheng, T.J., Cheng, Y.S., et al. (2009). Glycans on influenza
    hemagglutinin affect receptor binding and immune response. Proc Natl Acad Sci U S
    A 106, 18137-18142.
    Wei, C.J., Xu, L., Kong, W.P., Shi, W., Canis, K., Stevens, J., Yang, Z.Y., Dell, A.,
    Haslam, S.M., Wilson, I.A., et al. (2008). Comparative efficacy of neutralizing
    antibodies elicited by recombinant hemagglutinin proteins from avian H5N1 influenza
    virus. J Virol 82, 6200-6208.
    White, R.T. (1997). When the next influenza pandemic comes. BMJ 315, 204.
    Xu, R., McBride, R., Paulson, J.C., Basler, C.F., and Wilson, I.A. (2010). Structure,
    receptor binding, and antigenicity of influenza virus hemagglutinins from the 1957
    H2N2 pandemic. J Virol 84, 1715-1721.
    Zhou, F., Xu, W., Hong, M., Pan, Z., Sinko, P.J., Ma, J., and You, G. (2005). The role
    of N-linked glycosylation in protein folding, membrane targeting, and substrate
    binding of human organic anion transporter hOAT4. Mol Pharmacol 67, 868-876.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE