簡易檢索 / 詳目顯示

研究生: 張亘佑
Chang, Hsuan-Yu
論文名稱: 利用恆電位沉積法製備高活性鉑觸媒應用於磷酸燃料電池電極之製程優化
Optimized Fabrication Process for High Catalytic Activity Platinum Prepared by Electrodeposition Technique for PAFC Electrodes
指導教授: 葉宗洸
Yeh, Tsung-Kuang
口試委員: 曾繁根
Tseng, Fan-Gang
薛康琳
Hsueh, Kan-Lin
王美雅
Wang, Mei-Ya
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 94
中文關鍵詞: 磷酸燃料電池觸媒恆電位沉積法電化學沉積
外文關鍵詞: PAFC, platinum, catalyst, potentiostatic deposition, electrodeposition
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磷酸燃料電池(Phosphoric acid fuel cells, PAFC)相比於一般質子交換膜燃料電池,其操作溫度較高,約為150°C–220°C,有利於提高反應速率、簡化水管理系統和降低一氧化碳毒化觸媒效應;相比於相似操作溫度的鹼性燃料電池,磷酸作為電解質亦可耐受燃料中的二氧化碳影響,是未來具發展潛力的電池之一。在燃料電池中,電極觸媒為影響效率的關鍵,其中鉑為目前研究發現最佳的觸媒材料,因此,本研究利用電化學沉積法於碳布上製備高活性鉑觸媒,應用於磷酸燃料電池電極。
    實驗步驟方面,由於碳布為疏水性材質,因此試片先浸泡異丙醇進行親水處理後,再使用恆電位電鍍法在1.5mM氯鉑酸溶液中,直接沉積鉑於碳布上,並改變電鍍時的電位參數,利用循環伏安法(Cyclic voltammetry, CV)進行電化學分析,並透過掃描式電子顯微鏡(Scanning electron microscopy, SEM)、感應耦合電漿分析儀(Inductivity Coupled Plasma-Mass Spectrometer, ICP-MS)和X光粉末繞射儀(X-ray Powder Diffraction, XRD)分別對試片進行鉑觸媒形貌、含量和結晶性之分析,尋找適合的電鍍條件。
    在本研究中,選用3D結構均勻與高電化學活性表面積(Electrochemical surface area, ECSA)之觸媒,進行全電池測試。由於膜電極組(Membrane Electrode Assembly, MEA)進行熱壓組合時,溫度、壓力與時間參數相互影響,因此,在將熱壓製備時的參數與PBI膜的選用優化後,可在1cm2的電極面積下,得到最佳電池輸出功率974mW/cm2,相比於陰陽極都選用商用觸媒的對照組(643 mW/cm2),效能提升了51%。此外,以前述結果為基礎,進一步優化電鍍時的時間參數,可在1cm2的電極面積下,得到單位白金loading量電池輸出功率753mW/cm2-mgPt,優於商用觸媒的對照組17%。


    Phosphoric acid fuel cells (PAFC) is a high-temperature fuel cell with an operating temperature of 150°C–220°C. This high temperature not only can improve the reaction and simplify water management but also has a high tolerance to carbon monoxide poisoning. Besides, PAFC can also tolerate the influence of carbon dioxide in the fuel, comparing to alkaline electrolyte fuel cells with similar operating temperatures. Catalysts on the electrodes are critical to the efficiency of PAFC. In this study, Pt catalysts supported on 1×1 cm2 carbon cloth based microporous layer were developed by electrodeposition.
    The MPL was first treated with a hydrophilic process to make conduction with plating solution (1.5mM chloroplatinic acid solution). Different electric potentials were applied when electrodepositing. Morphology, particle size, loading, crystallinity, and electrochemical surface area (ECSA) were characterized by SEM, ICP-MS, XRD, and CV. Moreover, the temperature, pressure, and time of the hot-pressing process applied in MEA were also optimized in this study. In single cell tests, the maximum peak power density of PAFC with homemade Pt catalyst acted as the anode reached 974 mW/cm2, which was better than commercial Pt/C by 51%. Moreover, the electrodeposition time was optimized based on the previous experiments. The result showed that power per unit Pt loading could reach 753 mW/cm2-mgPt, better than the commercial PAFC by 17%.

    摘要 i Abstract ii 致謝 iii 總目錄 v 圖目錄 ix 表目錄 xiii 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 基本原理與文獻回顧 4 2.1 燃料電池簡介 4 2.2 磷酸燃料電池結構 6 2.2.1 氣體擴散層(Gas Diffusion Layer, GDL) 6 2.2.2 微孔層(Microporous Layer, MPL) 8 2.2.3 觸媒層(Catalyst Layer, CL) 9 2.2.4 觸媒載體(Catalyst Carrier) 10 2.2.5 質子交換膜(Proton Exchange Membrane) 11 2.2.6 雙極板(Bipolar Plate) 14 2.3 磷酸燃料電池工作原理 14 2.4 全電池極化損失 16 2.4.1. 燃料穿透(Fuel Crossover) 17 2.4.2. 活性極化(Activation Losses) 17 2.4.3. 歐姆極化(Ohmic Losses) 18 2.4.4. 濃度極化(Mass Transport) 19 2.4.5. 操作電壓 19 2.5 電化學分析 19 2.5.1 循環伏安法(Cyclic Voltammetry, CV) 19 2.6 質子交換膜燃料電池半反應 21 2.6.1 陽極氧化反應 21 2.6.2 陰極還原反應 23 2.6.3 氧化還原反應觸媒 25 2.6.4 觸媒與電解質含量 26 第三章 實驗方法 28 3.1 實驗流程 28 3.2 實驗藥品與設備 30 3.2.1 實驗藥品 30 3.2.2 實驗用氣體 31 3.2.3 實驗設備 31 3.2.4 分析用儀器 32 3.3 觸媒載體電沉積前處理 32 3.4 觸媒製備參數 34 3.5 觸媒電化學特性分析 35 3.5.1. 循環伏安法測試(CV) 35 3.6 觸媒檢測與形貌分析 37 3.6.1 熱場發射掃描式電子顯微鏡(Thermal Field Emission Scanning Electron Microscope, FEG-SEM) 37 3.6.2 感應耦合電漿分析儀(Inductivity Coupled Plasma-Mass Spectrometer, ICP-MS) 38 3.6.3 X光粉末繞射儀(X-ray Powder Diffraction,XRD) 39 3.7 全電池測試(Single Cell Test) 41 3.7.1 商用觸媒漿料配製與滴塗 41 3.7.2 膜電極組製備與組裝 42 3.7.3 全電池極化掃描測試 46 第四章 結果與討論 47 4.1 含有微孔層之商用碳布 47 4.1.1 微孔層形貌 47 4.1.2 商用觸媒Pt/C形貌 48 4.2 實驗A:調整恆電位沉積法之電位 48 4.2.1 場發射掃描式電子顯微鏡之觸媒形貌分析(SEM) 49 4.2.2 感應耦合電漿質譜分析儀分析(ICP-MS) 55 4.2.3 半電池電化學測試分析(CV) 56 4.2.4 X光粉末繞射法分析(XRD) 57 4.2.5 全電池測試分析 58 4.2.6 小結 60 4.3 實驗B和實驗B’:調整MEA熱壓之溫度、壓力和時間 60 4.3.1 全電池測試分析 61 4.4 實驗C和實驗C’:在相同恆電位沉積電位下調整電鍍時間 67 4.4.1 場發射掃描式電子顯微鏡之觸媒形貌分析(SEM) 68 4.4.2 感應耦合電漿質譜分析儀分析(ICP-MS) 73 4.4.3 半電池電化學測試分析(CV) 73 4.4.4 全電池測試分析 76 4.5 實驗D:使用PA-doped PBI並微調MEA組合參數 78 4.5.1 全電池測試分析 79 4.6 全電池再現性與長效性測試 81 4.7 自製電池與商用觸媒製備電池之效能比較 83 第五章 結論 86 參考文獻 88

    [1] 王禮、曹飛,「BP:未來20年全球能源格局嬗變」,多維TW,vol. 018,pp. 48-49,2017
    [2] BP plc, BP Energy Outlook, 2018 edition, New York, 2014
    [3] Organization for Economic Cooperation and Development, and International Energy Agency, World Energy Outlook 2014, 2014 edition, Paris, 2014
    [4] OpenStax, Chemistry, 1st ed, Houston, 2012
    [5] Organization for Economic Cooperation and Development, and International Energy Agency, World Energy Outlook 2020, 2020 edition, Paris, 2020
    [6] K. Jayasayee, V. A. T. Dam, T. Verhoeven, S. Celebi, and F. A. de Bruijn, “Oxygen Reduction Kinetics on Electrodeposited PtCo as a Model Catalyst for Proton Exchange Membrane Fuel Cell Cathodes: Stability as a Function of PtCo Composition”, J. Phys. Chem. C, vol. 113, pp. 20371, 2009
    [7] H. A. Gasteiger, S. S. Kocha, B. Sompalli, and F. T. Wagner, “Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs”, Applied Catalysis B: Environmental, vol. 56, pp. 9-35, 2005
    [8] J. Larminie, A. Dicks, Fuel Cell Systems Explained 2nd, edited by J. Wiley, Chichester West Sussex, 2003
    [9] 胡欣儀,「利用電化學沉積法於奈米碳管上製備高濃度鉑奈米顆粒並應用於質子交換膜燃料電池陽極端之研究」,國立清華大學工程與系統科學系,碩士論文,中華民國一○五年
    [10] 吳維陞,「電沈積高活性鉑觸媒於奈米碳管載體應用於質子交換膜燃料電池電極之製程優化」,國立清華大學工程與系統科學系,碩士論文,中華民國一○九年
    [11] 江政鉉,「利用電化學沉積法直接於微孔層上製備商用尺寸質子交換膜燃料電池之奈米鉑觸媒,國立清華大學工程與系統科學系,碩士論文,中華民國一○八年
    [12] B. Wickman, “Nanostructured Model Electrodes for Studies of Fuel Cell Reactions”, Chalmers University of Techonology, 2010
    [13] W. R. Grove, “On voltaic series and the combination of gases by platinum”, Phil. Mag., vol. 14, pp. 127-130, 1839
    [14] 李依文,「應用於質子交換膜燃料電池陰極端之奈米碳管支撐鉑鎳二元觸媒對於氧氣還原之效能研究」,國立清華大學工程與系統科學系,碩士論文,中華民國一○四年
    [15] U. Pasaogullari and C. Y. Wang, “Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells”, Journal of The Electrochemical Society, vol. 151, pp. 399-406, 2004
    [16] A. Pfrang, D. Veyret, and G. Tsotridis, Convection and Conduction Heat Transfer, 1st ed, European Commission, Joint Research Centre, Institute for energy, 2011
    [17] J. H. Nam, K. J. Lee, G. S. Hwang, C. J. Kim, and M. Kaviany, “Microporous layer for water morphology control in PEMFC”, International Journal of Heat and Mass Transfer, vol. 52, pp. 2779-2791, 2009
    [18] A. Pfrang, D. Veyret, and G. Tsotridis, “Convection and Conduction Heat Transfer”, edited by Dr. Amimul Ahsan, Netherlands, 2011
    [19] A. Y. Cetinkaya, O. K. Ozdemir, E. O. Koroglu, A. Hasimoglu, and B. Ozkaya, “The development of catalytic performance by ciating Pt-Ni on CMI7000 membrane as a cathode of a microbial fuel cell”, Bioresource Technology, vol. 195, pp. 188-193, 2015
    [20] Y. Zhou and D. Zhang, “Nano PtCu binary and PtCuAg ternary alloy catalysts for oxygen reduction reaction in proton exchange membrane fuel cells”, Journal of Power Sources, vol. 278, pp. 396-403, 2015
    [21] M. C. Tsai, T. K. Yeh, and C. H. Tsai, “Methanol oxidation efficiencies on carbon-nanotube supported platinum and platinumeruthenium nanoparticles prepared by pulsed electrodeposition”, International Journal of Hydrogen Energy, vol. 36, pp. 8261-8266, 2011
    [22] F. Ye, L. Chen, Ji. Li, J. Li, and X. Wang, “Shape-controlled fabrication of platinum electrocatalyst by pulse electrodeposition”, Electrochemistry Communications, vol. 10, pp. 476-479, 2008
    [23] E. Antolini, “Carbon supports for low-temperature fuel cell catalysts”, Applied Catalysis B: Environment, vol. 88, pp. 1-24, 2009
    [24] J. Liu, C. T. Liu, L. Zhao, J. J. Zhang, L. M. Zhang, Z. B. Wang, “Effect of different structures of carbon supports for cathode catalyst on performance of direct methanol fuel cell”, International Journal of Hydrog Energy, vol. 41, pp. 1859-1870, 2016
    [25] S. M. Ayyadurai, Y. S. Choi, P. Ganesan1, S. P. Kumaraguru, and Brank N. Popov, “Novel PEMFC Cathodes Prepared by Pulse Deposition”, Journal of The Electrochemical Society, vol.154, pp. 1063-1073, 2007
    [26] E. Antolini, “Carbon supports for low-temperature fuel cell catalysts”, Applied Catalysis B: Environmental, vol. 88, pp.1-24, 2009
    [27] J. N. Tiwari, R. N. Tiwari, G. Singh, K. S. Kim, “Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells”, Nano Energy, vol. 2, pp.553-578, 2013
    [28] J. Lobato, P. Cañizares, M. A. Rodrigo, J. J. Linares, and F. J. Pinar, “Study of the influence of the amount of PBI–H3PO4 in the catalytic layer of a high temperature PEMFC”, International Journal of Hydrogen Energy, vol. 35, pp.1347-1355, 2010
    [29] H. Park, H. Kim, D. K. Kim, W. J. Lee, I. Choi, H. J. Kim, and S. K. Kim, ”Performance deterioration and recovery in high-temperature polymer electrolyte membrane fuel cells Effects of deliquescence of phosphoric acid”, International Journal of Hydrogen Energy, vol. 45, pp.32844-32855, 2020
    [30] T. S. Chung, “A Critical Review of Polybenzimidazoles : Historical Development and Future R&D”, Polymer Reviews, vol. 37, pp. 277-301, 1997
    [31] 陳震宇,「溫度與溼度對PBI/H3PO4燃料電池特性影響之研究」,國立成功大學航空太空工程學系,博士論文,中華民國九十九年
    [32] Q. Li, J. O. Jensen, R. F. Savinell, and N. J. Bjerrum, “High temperature proton exchange membranes based on polybenzimidazoles for fuel cells”, Progress in Polymer Science, vol. 34, pp.449-477, 2009
    [33] P. Xing, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, K. Wang, and S. Kaliaguine, “Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes”, Journal of Membrane Science, vol. 229, pp.95-106, 2004
    [34] N. H. Jalani, M. Ramani, K. Ohlsson, S. Buelte, G. Pacifico, R. Pollard, R. Staudt, and R. Datta, “Performance analysis and impedance spectral signatures of high temperature PBI–phosphoric acid gel membrane fuel cells”, Journal of Journal of Power Sources, vol. 160, pp. 1096-1103, 2006
    [35] Y. Sone, P. Ekdunge, and D. Simonsson, “Proton Conductivity of Nafion 117 as Measured by a Four‐Electrode AC Impedance Method”, Journal of The Electrochemical Society, vol. 143, pp. 1254-1259, 1996
    [36] H. Vaghari, H. Jafarizadeh, A. Berenjian, and N. Anarjan, “Recent Advances in Application of Chitosan in Fuel Cells”, Sustainable Chemical Processes, 2013
    [37] M. Naraghi, Carbon Nanotubes-Growth and Applications, In Tech, pp. 337-392, 2011
    [38] J. Larminie and A. Dicks, Fuel cell systems explained, 2nd ed. Chichester, West Sussex: J. Wiley, 2003
    [39] 曾重仁、蔡秉蒼,「燃料電池性能量測與實作」,儲能科技人才培育資源中心,教育部能源國家型科技人才培育計畫 102年度特色能源教材,中華民國一○一年
    [40] Wang J., Analytical Electrochemistry, 2nd Edition, New York, 2000
    [41] 薛康琳,「燃料電池內的電化學反應-觸媒與反應動力」,工業技術研究院工業材料研究所,中華民國九十三年
    [42] 劉家瑞,「合成過渡金屬硫化物與碳材的複合材料及其在電化學產氫的應用」,東海大學化學研究所,碩士論文,中華民國一○二年
    [43] K. Kinoshita, Electrochemical Oxygen Technology, 1st Edition, New York, 1992
    [44] H. S. Wroblowa, Y. C. Pan, and G. Razumney, “Electroreduction of oxygen: A new mechanistic criterion”, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 69, pp. 195-201, 1976
    [45] C. H. Hamann, and W. Vielstich, Electrochemistry, 1st Edition, Weinheim, 1998
    [46] N. M. Markovic, and P. N. Ross, “Electrocatalysis at Well-Defined Surface”, Journal of the American Chemical Society, pp. 821-841, 1979
    [47] S. Mukerjee, S. Srinivasan, M. P. Soriaga, and James McBreen, “Role of Structural and Electronic Properties of Pt and Pt Alloys on Electrocatalysis of Oxygen Reduction An In Situ XANES and EXAFS Investigation”, Journal of Electrochemical Society, vol. 142, pp. 1409-1422, 1995
    [48] J.P. Hoare, Advances in Electrochemistry and Electrochemical Engineering, New York, 1967
    [49] P. Horsman, M. R. Tarasevich, and E. Yeager, Comprehensive Treatise of Electrochemistry, Springer US, 1983
    [50] E. Yeager, “Dioxygen electrocatalysis: Mechanisms in relation to catalyst structure”, Journal of Molecular Catalysis, vol. 38, pp. 5-25, 1986
    [51] T. Toda, H. Igarashi, H. Uchida, and M. Watanabe, “Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co”, Journal of The Electrochemical Society, vol. 146, pp. 3750-3756, 1999
    [52] E. Antolini, J. R. C. Salgado, and E. R. Gonzalez, “The stability of Pt–M (M = first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells: A literature review and tests on a Pt–Co catalyst”, Journal of Power Sources, vol. 160, pp. 957-968, 2006
    [53] Q. He, S. Mukerjee, R. Zeis, S. Parres-Esclapez, M. J. Illán-Gómez, A. Bueno-López, “Enhanced Pt stability in MO2 (M = Ce, Zr or Ce0.9Zr0.1)-promoted Pt/C electrocatalysts for oxygen reduction reaction in PAFCs”, Applied Catalysis A: General, vol. 381, pp. 54-65, 2010
    [54] D. K. Kim, H. Kim, H. Park, S. Oh, S. H. Ahn, H. J. Kim, and S. K. Kim, “Performance enhancement of high-temperature polymer electrolyte membrane fuel cells using Pt pulse electrodeposition”, Journal of Power Sources, vol. 438, 2019
    [55] P. Dhanasekaran, K. Lokesh, P. K. Ojha, A. K. Sahu, S. D. Bhat, and D. Kalpana, “Electrochemical deposition of three-dimensional platinum nanoflowers for high-performance polymer electrolyte fuel cells”, Journal of Colloid and Interface Science, vol. 572, pp. 198-206, 2020
    [56] Department of Chemical Engineering and Biotechnology, University of Cambridge, https://www.ceb.cam.ac.uk/research/groups/rg-eme/teaching-notes/linear-sweep-and-cyclic-voltametry-the-principles
    [57] F. Seland, T. Berning, B. Børresen, and R. Tunold, “Improving the performance of high-temperature PEM fuel cells based on PBI electrolyte”, Journal of Power Sources, vol. 160, pp. 27-36, 2006
    [58] S. Marti, J. O. Jensen, Q. Li, P. L. Garcia-Ybarra, and J. L. Castillo, “Feasibility of ultra-low Pt loading electrodes for high temperature proton exchange membrane fuel cells based in phosphoric acid-doped membrane”, International Journal of Hydrogen Energy, vol. 44, pp. 28273-28282, 2019
    [59] S. H. Kwon, S. Y. Lee, H. J. Kim, S. S. Jang, and S. G. Lee, “Distribution characteristics of phosphoric acid and PTFE binder on Pt/C surfaces in high-temperature polymer electrolyte membrane fuel cells: Molecular dynamics simulation approach”, International Journal of Hydrogen Energy, vol. 46, pp. 17295-17305, 2021
    [60] H. Park, H. Kim, D. K. Kim, W. J. Lee, I. Choi, H. J. Kim, and S. K. Kim, “Performance deterioration and recovery in high-temperature polymer electrolyte membrane fuel cells: Effects of deliquescence of phosphoric acid”, International Journal of Hydrogen Energy, vol. 45, pp. 32844-32855, 2020
    [61] F.J. Nores-Pondal, I. M. J. Vilella, H. Troiani, M. Granada, S.R. de Miguel, O.A. Scelzam, and H.R.Corti, “Catalytic activity vs. size correlation in platinum catalysts of PEM fuel cells prepared on carbon black by different methods”, International Journal of Hydrogen Energy, vol. 34, pp. 8193-8203, 2013
    [62] 謝逸凡,「鉑系觸媒與碳載體電極之電化學研究應用於直接甲醇燃料電池」,國立交通大學材料科學與工程學系,博士論文,中華民國九十九年
    [63] JSM-7610FPlus Schottky Field Emission Scanning Electron Microscope, JEOL Ltd., https://www.jeol.co.jp/en/products/detail/JSM-7610FPlus.html
    [64] 李珠,「感應耦合電漿質譜儀技術及其在材料分析上的應用」,工業材料雜誌,181期,中華民國九十一年
    [65] Crystallography. Scattering and diffraction. The Bragg's Law (csic.es), Consejo Superior de Investigaciones Científicas, https://www.xtal.iqfr.csic.es/Cristalografia/parte_05_5-en.html

    QR CODE