簡易檢索 / 詳目顯示

研究生: 林源山
Yuan-Shan Lin
論文名稱: 核子醫學之線上體內劑量評估
On-line Assessment of Internal Dose in Nuclear Medicine
指導教授: 董傳中
Chuan-Jong Tung
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 82
中文關鍵詞: 核子醫學體內劑量線上評估熱發光劑量計胸腺脾臟
外文關鍵詞: nuclear medicine, internal dosimetry, On-line Assessment, thermoluminescent dosimetor( TLD), thymus, spleen
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    體內劑量係指人體組織器官內之放射性物質所造成的輻射劑量,包括吸收劑量、等價劑量、約定劑量、有效劑量等。體內劑量的應用範圍,包括輻射防護及核子醫學。核子醫學關切的是經由注射或吞服進入體內之核醫藥物。核子醫學之放射性藥物的半衰期雖然都很短,而且其進入體內時之活度、物理形態、化學形態等均係已知,但因個別病患之新陳代謝數據的差異仍大,因此評估體內劑量也不甚容易。
    本論文主要研究在核子醫學上的體內劑量評估。利用台北榮總核醫部Siemens ECAM+造影機中安裝的軟體NucliDose,並針對自行製作之MIRD假體及臨床核醫檢查影像,線上評估符合MIRD模式之人體器官所受的輻射劑量。本研究另外也使用熱發光劑量計實際度量體內劑量,並與NucliDose評估之結果比較。
    修正過後,NucliDose的計算結果皆大於TLD的量測結果。靶器官部分,二者的吸收劑量結果,經過修正後非常的相近。源器官部分,NucliDose高估了約3倍的吸收劑量,但二者的結果尚在同一個階層中(in the order of magnitude)。
    體內劑量評估最大的困難在於不同個體之間的差異性,而使用NucliDose搭配影像系統,可藉由影像資料分析進一步探討個體間的變化,是解決此難題之一大利器,且本實驗建立了一套體內劑量評估之流程與方法,可供進行相關實驗之專業人員參考之用。


    Abstract

    Internal dose, including absorbed dose, equivalent dose, committed dose and effective dose, is the results of radionuclides in the body. The application of internal dose covers two main areas, namely radiation protection and nuclear medicine. In nuclear medicine, radioactive pharmaceuticals enter the body through injection and oral intake. Internal dosimetry is an uneasy task in nuclear medicine due to the variation of biokinetics in individual patients despite of the short half-life of radiopharmaceuticals and known physical and chemical characteristics.
    The present study is to establish a model of medical internal dosimetry by the MIRD (Medical Internal Radiation Dosimetry) calculation techniques and provide the standard reference for quality assurance of medical radiation dosimetry. This study was applied to the Siemens ECAM+ dual head gamma camera using NucliDose on-line assessment program. NucliDose has been installed to estimate the absorbed dose in the nuclear medicine imaging. Further, thermoluminescent dosimeters (TLDs) have been used to measure the absorbed doses to nuclear medicine patients (phantoms). Results of NucliDose on-line assessment and TLD measurement are compared to each other.
    After corrections, the estimated results of NucliDose are larger than the measured results of TLD. In the target organ, two results are very close. On the other hand, in the source organ, NucliDose is about 3 times larger than TLD, but this two results are in the order of magnitude.
    The most difficult reason to assess the internal dosimetry is the differences between people. NucliDose collocated with nuclear imaging system is a powerful tool for us to know how the differences are. And during the study, we establish a procedure to assess the internal dosimetry. This procedure is able to provide the professional to do their future study.

    目 錄 中文摘要 英文摘要 第一章:序言…………………………………………………………………1 1.1 前言……………………………………………………………………1 1.2 研究目的………………………………………………………………1 1.3 實驗架構………………………………………………………………2 第二章:理論基礎……………………………………………………………4 2.1 輻射劑量………………………………………………………………4 2.2 體內劑量………………………………………………………………4 2.2.1 吸收劑量…………………………………………………………6 2.2.2 等價劑量…………………………………………………………6 2.2.3 有效劑量…………………………………………………………7 2.3 NucliDose之劑量計算概念…………………………………………9 2.3.1 累積活度…………………………………………………………11 2.3.2 平均滯留時間……………………………………………………11 2.3.3 S值………………………………………………………………13 第三章:實驗器材介紹………………………………………………………14 3.1 核醫照影機……………………………………………………………14 3.2 NucliDose簡介………………………………………………………16 3.2.1 NucliDose之應用………………………………………………16 3.2.2 NucliDose之劑量計算…………………………………………17 3.3 NucliDose參數設定與介紹…………………………………………17 3.4 使用藥物簡介…………………………………………………………31 3.5 假體簡介………………………………………………………………32 3.5.1 假體資本資料……………………………………………………34 3.5.2 假體圖片…………………………………………………………35 3.6 輻射偵檢儀校正實驗室簡介…………………………………………38 3.6.1 設備………………………………………………………………38 3.6.2 測試能力範圍……………………………………………………39 3.7 熱發光劑量計…………………………………………………………40 3.7.1 發光原理…………………………………………………………40 3.7.2 輝光曲線…………………………………………………………42 3.7.3 常用熱發光劑量計………………………………………………43 第四章:實驗步驟與方法……………………………………………………45 4.1 利用熱發光劑量計之實驗……………………………………………45 4.1.1 熱發光劑量計之特性……………………………………………45 4.1.2 計讀儀之設定……………………………………………………47 4.1.3 熱發光劑量計之使用步驟………………………………………48 4.1.4 熱發光劑量計之校正……………………………………………48 4.1.4.1 靈敏度………………………………………………………48 4.1.4.2 劑量反應……………………………………………………49 4.1.5 TLD 之防水………………………………………………………50 4.2 利用NucliDose之實驗………………………………………………51 4.2.1 前置工作…………………………………………………………51 4.2.2 進行實驗…………………………………………………………53 第五章:結果與討論…………………………………………………………56 5.1 熱發光劑量計之實驗結果……………………………………………56 5.1.1 TLD之靈敏度……………………………………………………56 5.1.2 TLD之再現性……………………………………………………56 5.1.3 TLD之吸收劑量轉換……………………………………………59 5.1.4 TLD之量測結果…………………………………………………63 5.2 NucliDose之實驗結果………………………………………………65 5.3 結果比較與討論………………………………………………………68 第六章:結論…………………………………………………………………79 參考文獻………………………………………………………………………80 圖1.1 實驗流程架構圖………………………………………………………3 圖2.1 放射性物質入侵體內之示意圖………………………………………5 圖2.2 平均滯留時間…………………………………………………………12 圖3.1 E.CAM示意圖…………………………………………………………14 圖3.2 NucliDose之參數設定………………………………………………17 圖3.3 NucliDose喜好設定…………………………………………………17 圖3.4 放射性核種特性之設定………………………………………………19 圖3.5 組織或器官的相關係數之設定………………………………………21 圖3.6 影像資料之設定………………………………………………………24 圖3.7 對感興趣區域圈選之設定……………………………………………25 圖3.8 時間對活度曲線示意圖………………………………………………26 圖3.9 滯留時間之設定………………………………………………………28 圖3.10 輻射劑量計算結果之示意圖一……………………………………29 圖3.11 輻射劑量計算結果之示意圖二……………………………………30 圖3.12 Tc-99m之衰變概圖…………………………………………………32 圖3.13 假體全貌……………………………………………………………35 圖3.14 假體_肺臟……………………………………………………………35 圖3.15 假體_心臟……………………………………………………………35 圖3.16 假體_胸腺……………………………………………………………36 圖3.17 假體_脾臟……………………………………………………………37 圖3.18 照射器………………………………………………………………38 圖3.19 軌道床………………………………………………………………39 圖3.20 單位晶格能階………………………………………………………40 圖3.21 典型熱發光現象示意圖……………………………………………41 圖3.22 LiF(Mg,Cu,P)的輝光曲線…………………………………………42 圖4.1 熱發光劑量計之能量依存性…………………………………………46 圖4.2 熱發光劑量計之線性特性……………………………………………46 圖4.3 熱發劑量計計讀儀結構示意圖………………………………………47 圖4.4 放射性藥物於體內,時間對活度強度示意圖………………………53 圖4.5 假體定位示意圖………………………………………………………54 圖5.1 胸腺之TLD分佈示意圖………………………………………………63 圖5.2 脾臟切面之TLD分佈示意圖…………………………………………64 圖5.3 NucliDose實驗擷取之影像資料……………………………………66 圖5.4 NucliDose圈選有興趣之區域………………………………………66 圖5.5 去除物理半衰期,相對起始活度對時間關係圖……………………67 圖5.6 吸收劑量之實驗結果(NucliDose)…………………………………68 圖5.7 胸腺假體之內外層結構示意圖………………………………………69 圖5.8 TLD之能量依存性……………………………………………………70 圖5.9輻射經壓克力固定版衰減示意圖……………………………………71 圖5.10 壓克力固定版體積充滿放射性核種之溶液之示意圖……………72 圖5.11 TLD體積充滿放射性核種之溶液之示意圖…………………………73 圖5.12 實驗流程時間示意圖………………………………………………73 圖5.13 生物半衰期之修正趨勢圖…………………………………………74 圖5.14 MIRD Phantom與實際之器官距離示意圖…………………………77 表 目 錄 表2.1 輻射加權因子…………………………………………………………7 表2.2 組織加權因子…………………………………………………………8 表3.1 Siemens E.CAM系統可以取得的影像種類…………………………15 表3.2 TAC的數學函數與其相關資訊………………………………………27 表3.3 各種MIRD Phantom之胸腺數學參數值……………………………33 表3.4 各種MIRD Phantom之脾臟數學參數值……………………………34 表3.5 假體器官之資料………………………………………………………34 表3.3 常用之熱發光劑量計規格特性表……………………………………44 表5.1 熱發光劑量計之靈敏度實驗結果……………………………………57 表5.2 熱發光劑量計之再現性實驗結果……………………………………58 表5.3 質量衰減係數…………………………………………………………61 表5.4 本實驗所需之質量衰減係數…………………………………………61 表5.5 TLD計讀電量與曝露量關係之實驗結果……………………………62 表5.6 胸腺(源器官)之吸收劑量結果(TLD)……………………………63 表5.7 脾臟(靶器官)之吸收劑量結果(TLD)……………………………64 表5.8 實驗用射源資料………………………………………………………65 表5.9 組織或器官之相關設定………………………………………………65 表5.10 源器官與靶器官之吸收劑量實驗結果(NucliDose)………………67 表5.11 TLD與NucliDose之實驗結果比較…………………………………68 表5.12 修正後TLD與NucliDose之實驗結果比較…………………………78

    參考文獻
    1. Audrey T.S.-Stelson, Evelyn E. Watson, and Roger J. Cloutier, A History of Medical Internal Dosimetry, Health Physics, Vol.69 No.5, pp.766-782, 1995
    2. Frank H. Attix, Introduction to Radiological Physics and Radiation Dosimetry, John Wiley & Sons, Inc., New York, 1986
    3. William D. Erwin, and Mark W. Groch, Operator’s Notes for Northwestern Oncology Package (NucliDoseTM), 1998
    4. ICRP (1987), Individual Monitoring for Intakes of Radionuclides by Workers, ICRP Publication 54, Pergamon Press, Oxford.
    5. ICRP (1990), 1990 Recommendations of the International Commision on Radiological Protection, ICRP Publication 60, Pergamon Press, Oxford.
    6. Primer
    7. 翁寶山校閱, 蔡榮鍠編譯, 最新放射物理學, 初版, 第三章、第四章, 新竹市:黎明書店, 1984.11
    8. E. Martella, Dosimetric Characteristics of LiF: Mg, Cu, P (GR-200A), Applcazioni Scientifiche Generali.
    9. R.A. Tawil, M. Ramlo, N.A. Karpov, K.J. Velbeck, The Dosimetric Characteristics of The New Harshaw High Sensitivity, Copper Doped Lithium Fluoride, Harshaw/BICRON Radiation Measurement Products, USA, 2000
    10. Juan Azorin, Alicia Guti□rrez, Tadeusz Niewiadomski and Pedro Gonz□lez, Dosimetric Characteristics of LiF :Mg, Cu, P TL Phosphor Prepared at ININ, Mexico, Radiation Protection Dosimetry, Vol.33 N.1/4, pp.283-286, 1990
    11. Michael G. Stabin and Jeffry A. Siegel, Physical Models and Dose Factors for Use in Internal Dose Assessment, Health Physics, Vol.85 No.3, pp.294-310, 2003
    12. M.G. Stabin, M. Tagesson, S.R. Thomas, M. Ljungberg, and S.E. Strand, Radiation Dosimetry in Nuclear Medicine, Applied Radiation and Isotopes, Vol.50, pp.73-87, 1999
    13. K.F. Eckerman, M. Cristy, and J.C. Ryman, The ORNL Mathematical Phantom Series, 1996
    14. William D. Erwin, Mark W. Groch, Daniel J. Macey, Gerald L. DeNardo, and Sally J. DeNardo Sui Shen, A Radioimmunoimaging and MIRD Dosimetry Treatment Planning Program for Radioimmunotherapy, Nuclear Medicine & Biology, Vol.23, pp.525-532, 1996
    15. L. Lembo, M. Pimpinella, F. Monteventi, U. De Maio, R. Poli and I. Sermenghi, Un’analisi comparative delle caratteristiche dosimetriche di alcuni materilai termoluminescenti, Proc. XXVI Congr. Naz. AIRP (Italian Association for Radiation Protection), Verona (Italy), pp. 435-446, 1989
    16. G. Scarpa, M. Moscati and A. Soriani, Ulteriori Studi sulle caratteristiche radiochimiche nella rdioprotezione, Alghero (Italy), 1991
    17. F. Wu, Z. Zha, J. Li and Z. Zhu, LiF(Mg,Cu,P) thin dosemeter for skin dose measurement, Rad. Prot. Dosim. Vol.33, pp.331-334, 1990
    18. B. Chandra, A.R. Lakshmanan and R.C. Bhatt, K.G. Vohra, Annealing and reusability characteristics of LiF(Mg,Cu,P) TLD phosphor, Rad. Prot. Dosim. Vol.3, pp.161-167, 1982
    19. Y.S. Horowitz and A. Horowitz, Characterisation of LiF:Cu,Mg,P (GR-200) for personnel thermoluminescence dosimetry, Rad. Prot. Dosim. Vol.33, pp.279-282, 1990
    20. Z. Zha, S. Wang, F. Wu, G. Chen, Y. Li and J. Zhu, Measurement of extremely low level dose with LiF(Mg,Cu,P) TL Chips, Rad. Prot. Dosim., Vol.17, pp.415-418, 1986
    21. Herman Cember, Introduction to Health Physics, 3rd edition, The McGraw-Hill Inc., 1997
    22. Gerald L. DeNardo, Sui Shen, Sally J. DeNardo, Shu-Quinn Liao, Kathleen R. Lamborn, Daine A. DeNardo, and Aina Yuan, Quantification of iodine-131 in tumors using a threshold based on image contrast, European Journal of Nuclear Medicine, Vol.25, No.5, 1998
    23. K Norrgren, S Leide Svegborn, J Areberg, S Mattsson, ACCURACY OF THE QUANTIFICATION OF ORGAN ACTIVITY FROM PLANAR GAMMA CAMERA IMAGES, Department of Radiation Physics, Malm□ University Hospital, SE-205 02 Malm□, Sweden
    24. J. P. Jones and A. B. Brill, A Validity of an Equivalent Point Source (EPS) Assumption Used in Quantitative Scanning, Phys. Med. Biol., Vol.20, No.3, pp.344-464, 1975

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE