研究生: |
連家敏 Chia-min Lien |
---|---|
論文名稱: |
Quinone 類化合物增進 Geobacter sulfurreducens 還原溶解三價鐵及轉換四氯化碳之研究 Effects of quinone moieties on the reductive dissolution of ferric oxides and transformation of carbon tetrachloride in the presence of Geobacter sulfurreducens |
指導教授: |
董瑞安
Ruey-an Doong |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 119 |
中文關鍵詞: | 醌類化合物 、電子傳遞物質 、表面鍵結鐵物種 、四氯化碳 、G. sulfurreducens 、水合鐵 |
外文關鍵詞: | electron mediators, surface-bound iron species, carbon tetrachloride, Geobacter sulfurreducens, ferrihydrite |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Quinone類化合物是一種普遍存在於土壤與地下水中的電子傳遞物質,其有助於電子自生物體中轉移至如四氯化碳等氯化碳氫化合物以加速其在還原環境中的降解,亦可促進從生物體中轉移之電子轉移至三價鐵氧化物,以促使三價鐵還原為二價鐵。二價鐵可吸附於三價鐵氧化物表面而形成具強還原性的表面鍵結鐵物種,以還原四氯化碳等氯化有機物。本研究之主要目的在於探討不同quinone 類化合物在鐵還原環境中對四氯化碳的降解情形及quinone濃度對水合鐵還原成二價鐵的情形。研究中也將針對quinone的添加對鐵還原菌G. sulfurreducens生長情形的影響進行探討。研究結果顯示0.2 mM 1,4-naphthoquinone (NQ)或1,4-benzoquinone (BQ)的添加會抑制G. sulfurreducens的生長,但低濃度的NQ卻能促進G. sulfurreducens將水合鐵還原成Fe(II)。添加10 □M AQDS, LQ或NQ於存在G. sulfurreducens的鐵還原環境中,能達到最適當的Fe(II)濃度。相同的,在四氯化碳的還原降解過程中,添加10 □M 的AQDS, LQ或NQ於含有G. sulfurreducens的鐵還原系統也同樣的有最佳效果,顯示Fe(II) 產生濃度與四氯化碳的還原降解有相關性,其還原效能依序為AQDS>LQ>NQ,而反應速率常數則分別為未添加quinone系統的6.5,5.1及2.5倍。雖然未添加水合鐵的生物系統對四氯化碳具有降解的能力,但是添加水合鐵的系統效果更好。進一步分析各quinone化合物於G. sulfurreducens存在下的光譜變化,可推論quinone類化合物會因化學結構的不同而產生不同的活性物質以利電子傳遞;AQDS具有極低的氧化還原電位在G. sulfurreducens中會形成quinone自由基而加速水合鐵的還原及氯化有機污染物的還原降解反應,LQ則生成還原態的quinone,而NQ則不太容易還原,主要形成還原態的quinone及少量quinone自由基。本研究結果顯示,使用quinone以加速生物地質化學中鐵的還原及氯化有機物的降解是一種有效的長期污染物復育策略。
The dechlorination of carbon tetrachloride (CT) by biogenic iron species produced from the reductive dissolution of ferrihydrite by Geobacter sulfurreducens in aqueous solutions containing quinone compounds as electron mediators was investigated. The use of quinone compounds in the presence of G. sulfurreducens under iron-reductive conditions can effectively dechlorinate CT. The dechlorination of CT followed pseudo-first-order kinetics and the pseudo-first-order constants (kobs) for 10 □M AQDS, LQ (lawson) and NQ (naphthoquinone) were correspond to 6.5, 5.1, and 2.5 times higher than that in control systems, respectively. The dechlorination of CT was related to the ferrous concentrations produced from the dissolution of ferrihydrite by G. sulfurreducens. The dechlorination of CT was obvious when the system amended with 100 □M quinone compounds and contained no ferrihydrite in the presence of G. sulfurreducens under anaerobic conditions. Addition of ferrihydrite enhanced the efficiency and rate of CT dechlorination under iron-reducing conditions. This enhanced effect is attributed to the formation of active surface-bound iron species when ferrous adsorbed onto the surface of ferric oxides. In addition, the amendment of 10 □M AQDS, LQ, or NQ produced the highest Fe(II) concentration in the presence of G. sulfurreducens. Addition of 0.2 mM NQ and BQ into media, however, inhibited the growth of G. sulfurreducens. Spectroscopic results including EPR and UV-Vis showed that the selected quinone compounds can form various active electron mediators for electron transfer. AQDS can be reduced to semiquinone, LQ can be converted to hydroquinone, while NQ could be produced to hydroquinone and trace amounts of semiquinone in the presence of G. sulfurreducens. Results obtained show that addition of quinone compounds can enhance the ferrous production, and subsequently formed surface-bound iron species to effectively dechlorinate chlorinated hydrocarbon for long-term remediation under iron-reducing conditions.
Amonette, J. E.; Workman, D. J.; Kennedy, D. W.; Fruchter, J. S.; Gorby, Y. A., Dechlorination of carbon tetrachloride by Fe(II) associated with goethite. Environmental Science & Technology 2000, 34(21), 4606-4613.
Anderson, R. T.; Vrionis, H. A.; Ortiz-Bernad, I.; Resch, C. T.; Long, P. E.; Dayvault, R.; Karp, K.; Marutzky, S.; Metzler, D. R.; Peacock, A.; White, D. C.; Lowe, M.; Lovley, D. R., Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Applied and Environmental Microbiology 2003, 69(10), 5884-5891.
Assaf-Anid, N.; Lin, K. Y., Carbon tetrachloride reduction by Fe2+, S2-, and FeS with vitamin B-12 as organic amendment. Journal of Environmental Engineering-Asce 2002, 128(1), 94-99.
Burgos, W. D.; Fang, Y. L.; Royer, R. A.; Yeh, G. T.; Stone, J. J.; Jeon, B. H.; Dempsey, B. A., Reaction-based modeling of quinone-mediated bacterial iron(III) reduction. Geochimica Et Cosmochimica Acta 2003, 67(15), 2735-2748.
Burris, D. R.; Delcomyn, C. A.; Smith, M. H.; Roberts, A. L., Reductive dechlorination of tetrachloroethylene and trichloroethylene catalyzed by vitamin B-12 in homogeneous and heterogeneous systems. Environmental Science & Technology 1996, 30(10), 3047-3052.
Caccavo, F.; Blakemore, R. P.; Lovley, D. R., A Hydrogen-oxidizing, Fe(III)-reducing microorganism from the Great Bay Estuary, New Hampshire. Applied and Environmental Microbiology 1992, 58(10), 3211-3216.
Caccavo, F.; Lonergan, D. J.; Lovley, D. R.; Davis, M.; Stolz, J. F.; McInerney, M. J., Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Applied and Environmental Microbiology 1994, 60(10), 3752-3759.
Cervantes, F. J.; Vu-Thi-Thu, L.; Lettinga, G.; Field, J. A., Quinone-respiration improves dechlorination of carbon tetrachloride by anaerobic sludge. Applied Microbiology and Biotechnology 2004, 64(5), 702-711.
Chen, J.; Gu, B. H.; Royer, R. A.; Burgos, W. D., The roles of natural organic matter in chemical and microbial reduction of ferric iron. Science of the Total Environment 2003, 307(1-3), 167-178.
Coates, J. D.; Phillips, E. J. P.; Lonergan, D. J.; Jenter, H.; Lovley, D. R., Isolation of Geobacter species from diverse sedimentary environments. Applied and Environmental Microbiology 1996, 62(5), 1531-1536.
Collins, R.; Picardal, F., Enhanced anaerobic transformations of carbon tetrachloride by soil organic matter. Environmental Toxicology and Chemistry 1999, 18(12), 2703-2710.
Cory, R. M.; McKnight, D. M., Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environmental Science & Technology 2005, 39(21), 8142-8149.
Coughlin, B. R.; Stone, A. T., Nonreversible adsorption of divalent metal ions (MnII, CoII, NiII, CuII, and PbII) onto goethite: effects of acidification, FeII addition, and picolinic acid addition. Environmental Science & Technology 1995, 29(9), 2445-2455.
Curtis, G. P.; Reinhard, M., Reductive dehalogenation of hexachloroethane, carbon tetrachloride, and bromoform by anthrahydroquinone disulfonate and humic acid. Environmental Science & Technology 1994, 28(13), 2393-2401.
de Best, J. H.; Hunneman, P.; Doddema, H. J.; Janssen, D. B.; Harder, W., Transformation of carbon tetrachloride in an anaerobic packed-bed reactor without addition of another electron donor. Biodegradation 1999, 10(4), 287-295.
Devlin, J. F.; Muller, D., Field and laboratory studies of carbon tetrachloride transformation in a sandy aquifer under sulfate reducing conditions. Environmental Science & Technology 1999, 33(7), 1021-1027.
DiChristina, T. J.; Moore, C. M.; Haller, C. A., Dissimilatory Fe(III) and Mn(IV) reduction by Shewanella putrefaciens requires ferE, a homolog of the pulE (gspE) type II protein secretion gene. Journal of Bacteriology 2002, 184(1), 142-151.
Dobbin, P. S.; Carter, J. P.; San Juan, C. G. S.; von Hobe, M.; Powell, A. K.; Richardson, D. J., Dissimilatory Fe(III) reduction by Clostridium beijerinckii isolated from freshwater sediment using Fe(III) maltol enrichment. Fems Microbiology Letters 1999, 176(1), 131-138.
Dobbin, P. S.; Warren, L. H.; Cook, N. J.; McEwan, A. G.; Powell, A. K.; Richardson, D. J., Dissimilatory iron(III) reduction by Rhodobacter capsulatus. Microbiology-Uk 1996, 142, 765-774.
Doong, R. A.; Chen, K. T.; Tsai, H. C., Reductive dechlorination of carbon tetrachloride and tetrachloroethylene by zerovalent silicon-iron reductants. Environmental Science & Technology 2003, 37(11), 2575-2581.
Doong, R. A.; Chiang, H. C., Transformation of carbon tetrachloride by thiol reductants in the presence of quinone compounds. Environmental Science & Technology 2005, 39(19), 7460-7468.
Doong, R. A.; Schink, B., Cysteine-mediated reductive dissolution of poorly crystalline iron(III) oxides by Geobacter sulfurreducens. Environmental Science & Technology 2002, 36(13), 2939-2945.
Doong, R. A.; Wu, S. C., Enhanced biodegradation of carbon-tetrachloride by the supplement of substrate and mineral ions under anaerobic condition. Water Environment Research 1995, 67(3), 276-281.
Elsner, M.; Schwarzenbach, R. P.; Haderlein, S. B., Reactivity of Fe(II)-bearing minerals toward reductive transformation of organic contaminants. Environmental Science & Technology 2004, 38(3), 799-807.
Esteve-Nunez, A.; Nunez, C.; Lovley, D. R., Preferential reduction of Fe(III) over fumarate by Geobacter sulfurreducens. Journal of Bacteriology 2004, 186(9), 2897-2899.
Esteve-Nunez, A.; Rothermich, M.; Sharma, M.; Lovley, D., Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture. Environmental Microbiology 2005, 7(5), 641-648.
Feng, J.; Lim, T. T., Iron-mediated reduction rates and pathways of halogenated methanes with nanoscale Pd/Fe: Analysis of linear free energy relationship. Chemosphere 2007, 66(9), 1765-1774.
Field, J. A.; Cervantes, F. J.; van der Zee, F. P.; Lettinga, G., Role of quinones in the biodegradation of priority pollutants: a review. Water Science and Technology 2000, 42(5-6), 215-222.
Finneran, K. T.; Johnsen, C. V.; Lovley, D. R., Rhodoferax ferrireducens sp nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III). International Journal of Systematic and Evolutionary Microbiology 2003, 53, 669-673.
Finster, K.; Bak, F., Complete oxidation of propionate, valerate, succinate, and other organic compounds by newly isolated types of marine, anaerobic, mesophilic, Gram-negative, sulfur-reducing Eubacteria. Applied and Environmental Microbiology 1993, 59(5), 1452-1460.
Fritsch, J. M.; McNeill, K., Aqueous reductive dechlorination of chlorinated ethylenes with tetrakis(4-carboxyphenyl)porphyrin cobalt. Inorganic Chemistry 2005, 44(13), 4852-4861.
Fu, Q. S.; Barkovskii, A. L.; Adriaens, P., Reductive transformation of dioxins: An assessment of the contribution of dissolved organic matter to dechlorination reactions. Environmental Science & Technology 1999, 33(21), 3837-3842.
Furukawa, Y.; Kim, J. W.; Watkins, J.; Wilkin, R. T., Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron. Environmental Science & Technology 2002, 36(24), 5469-5475.
Gabor, K.; Verissimo, C. S.; Cyran, B. C.; ter Horst, P.; Meijer, N. P.; Smidt, H.; de Vos, W. M.; van der Oost, J., Characterization of CprK1, a CRP/FNR-type transcriptional regulator of halorespiration from Desulfitobacterium hafniense. Journal of Bacteriology 2006, 188(7), 2604-2613.
Gregory, K. B.; Lovley, D. R., Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environmental Science & Technology 2005, 39(22), 8943-8947.
Guerrero-Barajas, C.; Field, J. A., Riboflavin- and cobalamin-mediated biodegradation of chloroform in a methanogenic consortium. Biotechnology and Bioengineering 2005a, 89(5), 539-550.
Guerrero-Barajas, C.; Field, J. A., Enhancement of anaerobic carbon tetrachloride biotransformation in methanogenic sludge with redox active vitamins. Biodegradation 2005b, 16(3), 215-228.
Guerrero-Barajas, C.; Field, J. A., Enhanced anaerobic biotransformation of carbon tetrachloride with precursors of vitamin B-12 biosynthesis. Biodegradation 2006, 17(4), 317-329.
He, Q.; Sanford, R. A., Acetate threshold concentrations suggest varying energy requirements during anaerobic respiration by Anaeromyxobacter dehalogenans. Applied and Environmental Microbiology 2004, 70(11), 6940-6943.
Holmes, D. E.; Finneran, K. T.; O'Neil, R. A.; Lovley, D. R., Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Applied and Environmental Microbiology 2002, 68(5), 2300-2306.
Jeon, B. H.; Dempsey, B. A.; Burgos, W. D., Kinetics and mechanisms for reactions of Fe(II) with iron(III) oxides. Environmental Science & Technology 2003, 37(15), 3309-3315.
Kaden, J.; Galushko, A. S.; Schink, B., Cysteine-mediated electron transfer in syntrophic acetate oxidation by cocultures of Geobacter sulfurreducens and Wolinella succinogenes. Archives of Microbiology 2002, 178(1), 53-58.
Kappler, A.; Benz, M.; Schink, B.; Brune, A., Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. Fems Microbiology Ecology 2004, 47(1), 85-92.
Kashefi, K.; Holmes, D. E.; Baross, J. A.; Lovley, D. R., Thermophily in the Geobacteraceae: Geothermobacter ehrlichii gen. nov., sp nov., a novel thermophilic member of the Geobacteraceae from the "Bag city" hydrothermal vent. Applied and Environmental Microbiology 2003, 69(5), 2985-2993.
Kostka, J. E.; Dalton, D. D.; Skelton, H.; Dollhopf, S.; Stucki, J. W., Growth of iron(III)-reducing bacteria on clay minerals as the sole electron acceptor and comparison of growth yields on a variety of oxidized iron forms. Applied and Environmental Microbiology 2002, 68(12), 6256-6262.
Krone, U. E.; Laufer, K.; Thauer, R. K.; Hogenkamp, H. P. C., Coenzyme F430 as a possible catalyst for the reductive dehalogenation of chlorinated C1 hydrocarbons in methanogenic bacteria. Biochemistry 1989, 28(26), 10061-10065.
Krumholz, L. R.; Sharp, R.; Fishbain, S. S., A freshwater anaerobe coupling acetate oxidation to tetrachloroethylene dehalogenation. Applied and Environmental Microbiology 1996, 62(11), 4108-4113.
Kwon, M. J.; Finneran, K. T., Microbially mediated biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine by extracellular electron shuttling compounds. Applied and Environmental Microbiology 2006, 72(9), 5933-5941.
Lin, W. C.; Coppi, M. V.; Lovley, D. R., Geobacter sulfurreducens can grow with oxygen as a terminal electron acceptor. Applied and Environmental Microbiology 2004, 70(4), 2525-2528.
Liu, C. X.; Gorby, Y. A.; Zachara, J. M.; Fredrickson, J. K.; Brown, C. F., Reduction kinetics of Fe(III), Co(III), U(VI) Cr(VI) and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. Biotechnology and Bioengineering 2002, 80(6), 637-649.
Lloyd, J. R.; Sole, V. A.; Van Praagh, C. V. G.; Lovley, D. R., Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria. Applied and Environmental Microbiology 2000, 66(9), 3743-3749.
Lonergan, D. J.; Jenter, H. L.; Coates, J. D.; Phillips, E. J. P.; Schmidt, T. M.; Lovley, D. R., Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. Journal of Bacteriology 1996, 178(8), 2402-2408.
Lovley, D. R., Dissimilatory Fe(III) and Mn(IV) reduction. Microbiological Reviews 1991a, 55(2), 259-287.
Lovley, D. R., Dissimilatory metal reduction. Annual Review of Microbiology 1993, 47, 263-290.
Lovley, D. R.; Coates, J. D.; BluntHarris, E. L.; Phillips, E. J. P.; Woodward, J. C., Humic substances as electron acceptors for microbial respiration. Nature 1996, 382(6590), 445-448.
Lovley, D. R.; Fraga, J. L.; Blunt-Harris, E. L.; Hayes, L. A.; Phillips, E. J. P.; Coates, J. D., Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochimica Et Hydrobiologica 1998, 26(3), 152-157.
Lovley, D. R.; Fraga, J. L.; Coates, J. D.; Blunt-Harris, E. L., Humics as an electron donor for anaerobic respiration. Environmental Microbiology 1999, 1(1), 89-98.
Lovley, D. R.; Giovannoni, S. J.; White, D. C.; Champine, J. E.; Phillips, E. J. P.; Gorby, Y. A.; Goodwin, S., Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals Archives of Microbiology 1993, 159(4), 336-344.
Lovley, D. R.; Phillips, E. J. P.; Gorby, Y. A.; Landa, E. R., Microbial reduction of uranium. Nature 1991b, 350(6317), 413-416.
Luijten, M.; Weelink, S. A. B.; Godschalk, B.; Langenhoff, A. A. M.; van Eekert, M. H. A.; Schraa, G.; Stams, A. J. M., Anaerobic reduction and oxidation of quinone moieties and the reduction of oxidized metals by halorespiring and related organisms. Fems Microbiology Ecology 2004, 49(1), 145-150.
Luu, Y. S.; Ramsay, J. A., Review: microbial mechanisms of accessing insoluble Fe(III) as an energy source. World Journal of Microbiology & Biotechnology 2003, 19(2), 215-225.
Maithreepala, R. A.; Doong, R. A., Synergistic effect of copper ion on the reductive dechlorination of carbon tetrachloride by surface-bound Fe(II) associated with goethite. Environmental Science & Technology 2004, 38(1), 260-268.
Maithreepala, R. A.; Doong, R. A., Enhanced dechlorination of chlorinated methanes and ethenes by chloride green rust in the presence of copper(II). Environmental Science & Technology 2005, 39(11), 4082-4090.
McCormick, M. L.; Adriaens, P., Carbon tetrachloride transformation on the surface of nanoscale biogenic magnetite particles. Environmental Science & Technology 2004, 38(4), 1045-1053.
McCormick, M. L.; Bouwer, E. J.; Adriaens, P., Carbon tetrachloride transformation in a model iron-reducing culture: Relative kinetics of biotic and abiotic reactions. Environmental Science & Technology 2002, 36(3), 403-410.
Morra, M. J.; Borek, V.; Koolpe, J., Transformation of chlorinated hydrocarbons using aquocobalamin or coenzyme F-430 in combination with zero-valent iron. Journal of Environmental Quality 2000, 29(3), 706-715.
Myers, C. R.; Myers, J. M., Cloning and sequence of cymA a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1. Journal of Bacteriology 1997, 179(4), 1143-1152.
Nevin, K. P.; Lovley, D. R., Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans. Applied and Environmental Microbiology 2002, 68(5), 2294-2299.
Niemet, M. R.; Semprini, L., Column studies of anaerobic carbon tetrachloride biotransformation with Hanford Aquifer material. Ground Water Monitoring and Remediation 2005, 25(3), 82-92.
Nobbs, D.; Chipman, G., Contaminated site investigation and remediation of chlorinated aromatic compounds. Separation and Purification Technology 2003, 31(1), 37-40.
Ortiz-Bernad, I.; Anderson, R. T.; Vrionis, H. A.; Lovley, D. R., Vanadium respiration by Geobacter metalireducens: Novel strategy for in situ removal of vanadium from groundwater. Applied and Environmental Microbiology 2004, 70(5), 3091-3095.
Pecher, K.; Haderlein, S. B.; Schwarzenbach, R. P., Reduction of polyhalogenated methanes by surface-bound Fe(II) in aqueous suspensions of iron oxides. Environmental Science & Technology 2002, 36(8), 1734-1741.
Pedersen, J. A. CRC handbook of EPR spectra from quinones and quinols; CRC Press: Boca Raton, Fla., 1985.
Perlinger, J. A.; Buschmann, J.; Angst, W.; Schwarzenbach, R. P., Iron porphyrin and mercaptojuglone mediated reduction of polyhalogenated methanes and ethanes in homogeneous aqueous solution. Environmental Science & Technology 1998, 32(16), 2431-2437.
Perlinger, J. A.; Kalluri, V. M.; Venkatapathy, R.; Angst, W., Addition of hydrogen sulfide to juglone. Environmental Science & Technology 2002, 36(12), 2663-2669.
Pirnie, E. F.; Talley, J. W.; Hunda, L. S., Transformation of DDT and its metabolites by various abiotic methods. Journal of Environmental Engineering-Asce 2006, 132(5), 560-564.
Rau, J.; Knackmuss, H. J.; Stolz, A., Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria. Environmental Science & Technology 2002, 36(7), 1497-1504.
Rau, J.; Knackmuss, H. J.; Stolz, A., Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria. Environmental Science & Technology 2002, 36(7), 1497-1504.
Reguera, G.; McCarthy, K. D.; Mehta, T.; Nicoll, J. S.; Tuominen, M. T.; Lovley, D. R., Extracellular electron transfer via microbial nanowires. Nature 2005, 435(7045), 1098-1101.
Rivett, M. O.; Chapman, S. W.; Allen-King, R. M.; Feenstra, S.; Cherry, J. A., Pump-and-treat remediation of chlorinated solvent contamination at a controlled field-experiment site. Environmental Science & Technology 2006, 40(21), 6770-6781.
Roden, E. E., Fe(III) oxide reactivity toward biological versus chemical reduction. Environmental Science & Technology 2003, 37(7), 1319-1324.
Roden, E. E.; Zachara, J. M., Microbial reduction of crystalline iron(III) oxides: Influence of oxide surface area and potential for cell growth. Environmental Science & Technology 1996, 30(5), 1618-1628.
Roginsky, V. A.; Pisarenko, L. M.; Bors, W.; Michel, C., The kinetics and thermodynamics of quinone-semiquinone-hydroquinone systems under physiological conditions. Journal of the Chemical Society-Perkin Transactions 2 1999, (4), 871-876.
Ronov, A. B.; Yaroshevsky, A. A., Chemical composition of the earth’s crust. In P. J. Hard (ed.) The earth’s crust and upper mantle. American Geophysical Union, Washington, D. C, 1971, 37-57.
Rugge, K.; Hofstetter, T. B.; Haderlein, S. B.; Bjerg, P. L.; Knudsen, S.; Zraunig, C.; Mosbaek, H.; Christensen, T. H., Characterization of predominant reductants in an anaerobic leachate-contaminated aquifer by nitroaromatic probe compounds. Environmental Science & Technology 1998, 32(1), 23-31.
Sanford, R. A.; Cole, J. R.; Tiedje, J. M., Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp nov., an aryl-halorespiring facultative anaerobic myxobacterium. Applied and Environmental Microbiology 2002, 68(2), 893-900.
Schwarzenbach, R. P.; Stierli, R.; Lanz, K.; Zeyer, J., Quinone and iron porphyrin mediated reduction of nitroaromatic compounds in homogeneous aqueous solution Environmental Science & Technology 1990, 24(10), 1566-1574.
Schwertman, U.; Cornell, R. M., Iron Oxides in the Laboratory: preparation and Characterization, VCH, Weinheim, Germany, 1991, 61-79.
Scott, D. T.; McKnight, D. M.; Blunt-Harris, E. L.; Kolesar, S. E.; Lovley, D. R., Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environmental Science & Technology 1998, 32(19), 2984-2989.
Seeliger, S.; Cord-Ruwisch, R.; Schink, B., A periplasmic and extracellular c-type cytochrome of Geobacter sulfurreducens acts as a ferric iron reductase and as an electron carrier to other acceptors or to partner bacteria. Journal of Bacteriology 1998, 180(14), 3686-3691.
Sparks D. L. Environmental soil chemistry; Academic Press: San Diego, California, 1995.
Stolz, J. F.; Gugliuzza, T.; Blum, J. S.; Oremland, R.; Murillo, F. M., Differential cytochrome content and reductase activity in Geospirillum barnesii strain SeS3. Archives of Microbiology 1997, 167(1), 1-5.
Straub, K. L.; Benz, M.; Schink, B., Iron metabolism in anoxic environments at near neutral pH. Fems Microbiology Ecology 2001, 34(3), 181-186.
Straub, K. L.; Buchholz-Cleven, B. E. E., Geobacter bremensis sp nov and Geobacter pelophilus sp nov., two dissimilatory ferric-iron-reducing bacteria. International Journal of Systematic and Evolutionary Microbiology 2001, 51, 1805-1808.
Stroo, H. F.; Unger, M.; Ward, C. H.; Kavanaugh, M. C.; Vogel, C.; Leeson, A.; Marqusee, J. A.; Smith, B. P., Remediating chlorinated solvent source zones. Environmental Science & Technology 2003, 37(11), 224A-230A.
Trumpower, B. L. Function of quinines in energy conserving systems: Academic: New York, 1982
van de Pas, B. A.; Jansen, S.; Dijkema, C.; Schraa, G.; de Vos, W. M.; Stams, A. J. M., Energy yield of respiration on chloroaromatic compounds in Desulfitobacterium dehalogenans. Applied and Environmental Microbiology 2001, 67(9), 3958-3963.
van de Pas, B. A.; Smidt, H.; Hagen, W. R.; van der Oost, J.; Schraa, G.; Stams, A. J. M.; de Vos, W. M., Purification and molecular characterization of ortho-chlorophenol reductive dehalogenase, a key enzyme of halorespiration in Desulfitobacterium dehalogenans. Journal of Biological Chemistry 1999, 274(29), 20287-20292.
Vogel, T. M.; Criddle, C. S.; McCarty, P. L., Transformations of halogenated aliphatic compounds. Environmental Science & Technology 1987, 21(8), 722-736.
Wang, W. J.; Chin, H. S.; Yu, L. J.; Wang, B. C., Dissolution and reduction of magnetite by bacteria. Synthetic Metals 1995, 70(1-3), 1465-1468.
Wiatrowski, H. A.; Ward, P. M.; Barkay, T., Novel reduction of mercury(II) by mercury-sensitive dissimilatory metal reducing bacteria. Environmental Science & Technology 2006, 40(21), 6690-6696.
Zachara, J. M.; Kukkadapu, R. K.; Fredrickson, J. K.; Gorby, Y. A.; Smith, S. C., Biomineralization of poorly crystalline Fe(III) oxides by dissimilatory metal reducing bacteria (DMRB). Geomicrobiology Journal 2002, 19(2), 179-207.