研究生: |
羅偉恆 Wei-Hein Lo |
---|---|
論文名稱: |
考量製程變異下的溫度感應器的佈置方法 Placement of Temperature Sensor Under Process Variations |
指導教授: |
黃婷婷
TingTing Hwang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 23 |
中文關鍵詞: | 製程變異 、溫度感應器 |
外文關鍵詞: | process variation, thermal sensor |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著製程的演進,製程變異對溫度感應器所造成的誤差已不能被忽略。為了減少溫度感應器因製程變異所造成的誤差,我們提出一個以測量相對溫度為主體的新的溫度感應器架構及其佈置方法。這個新的架構不但可以減少製程變異所造成的誤差,也有效的減少感應器的面臨。實驗結果顯示最小溫度誤差比傳統溫度感應器準確147倍,最大溫度誤差比傳統溫度感應器準確11倍,另外面積比傳統溫度感應器減少74%
Variations occur inevitably in temperature sensor from process variations. To tackle the
former variations, a relative temperature sensor is proposed and explored in this thesis. It
eliminates the process variations in temperature measurement and improves area efficiency.
Without external calibration, the new temperature sensor is able to provide accurate temper-
ature information. Simulations using the proposed approach show 147 times improvement in
minimum error cases, 11 times improvement in maximum error cases and 74% area reduction
in area of sensors.
[1] Rajarshi Mukherjee and Seda Ogrenci Memik, ”Systematic Temperature Sensor Allocation and placement for Microprocessors,” Proceedings of the 43rd conference on Design
Automation, pp. 542-547, 2006.
[2] Hector Sanchez et al., ”Thermal Management System for High Performance PowerPCTM
Microprocessors,” Proceedings of Compcon, pp. 325-330, 1997.
[3] Kyeong-Jae Lee, Kevin Skadron and Wei Huang, ”Analytical Model for Sensor Place-
ment on Microprocessors,” International Conference Computer Design, pp. 24-27, 2005.
[4] W. Huang, S. Ghosh, K. Sankaranarayanan, K. Skadron and M. R. Stan, ”HotSpot:
Thermal Modeling for CMOS VLSI Systems,” IEEE Transactions on Component Packaging
and Manufacturing Technology, 2005.
[5] David Brooks, Vivek Tiwari and Margaret Martonosi, ”Wattch: A Framework for
Architectural-level Power Analysis and Optimizations,” ISCA, 2000.
[6] ”SPEC-CPU2000, Standard Performance Evaluation Council, Performance Evaluation
in the New Millennium, Version 1.1,” 2000, http://www.specbench.org/osg/cpu2000.
[7] Michiel A. P. Pertijs, Kofi A. A. Makinwa, Johan H. Huijsing, ”A CMOS Smart Tem-
perature Sensor with a 3 Inaccuracy of ±0.1◦C from -55◦C to 125◦C,” IEEE Journal
of Solid-State Circuits, Vol. 40, NO. 12, pp. 2805-1815, Dec. 2005.
[8] Souvik Mahapatra, P. Bharath Kumar, M. A. Alam, ”Investigation and Modeling of
Interface and Bulk Trap Generation during Negative Bias Temperature Instability of P-MOSFETs,” IEEE Transactions on Electron Devices, Vol. 51, NO. 9, pp. 1371-1379,
Sep. 2004.
[9] M. A. Alam, ”A Critical Examination of The Mechanics of Dynamic NBTI for PMOS-
FETs,” IEDM, pp. 345-348, 2003.
[10] Heyer LJ, Kruglyak S, Yooseph S, ”Exploring Expression Data: Identification and
Analysis of Coexpressed Genes,” Genome Res., pp. 1106-1115, 1999 Nov;9(11).
[11] D. C. Burger and T. M. Austin, ”The SimpleScalar Tool Set, Version 2.0,” Computer
Architecture News, pp. 13-25, 1997. 25(3).
[12] Rajarshi Mukherjee and Seda Ogrenci Memik, ”Physical Aware Frequency Selection for
Dynamic Thermal Management in Multi-core Systems” International Conference on
Computer Aided Design , pp. 547-552, 2006.
[13] Amit Kumar, Li Shang, Li-Shiuan Peh and Niraj K. Jha, ”HybDTM: a Coordinated
Hardware-software Approach for Dynamic Thermal Management” Proceedings of the
43rd annual conference on Design automation, pp. 548-553, 2006.
[14] Lin Yuan, Sean Leventhal and Gang Qu, ”Temperature-Aware Leakage Minimization
Technique for Real-Time Systems” International Conference on Computer Aided Design,
pp. 761-764, 2006.