研究生: |
蔡武璋 Tsai, Wu-Chang |
---|---|
論文名稱: |
垂直磁化鐵鉑與鈷鐵硼薄膜之磁異向性研究 Study of perpendicular magnetic anisotropy in FePt and CoFeB thin films |
指導教授: |
賴志煌
Lai, Chih-Huang |
口試委員: |
曾俊元
Tseng, Tseung-Yuen 李三保 Lee, San-Boh 張慶瑞 Chang, Ching-Ray 高明哲 Kao, Ming-Jer 賴志煌 Lai, Chih-Huang |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 151 |
中文關鍵詞: | 鈷鐵硼合金 、鐵鉑合金 、垂直磁異向性 、壓電基板 |
外文關鍵詞: | CoFeB, FePt, perpendicular magnetic anisotropy, piezoelectric substrate |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,由於自旋電子元件如磁性記憶體、邏輯元件蓬勃發展,其中利用電場控制磁性材料特性的方式備受矚目,主要是利用電場的方式可以大幅降低元件中的功率消耗,加上這一類元件製備的方式完全相容於現有的半導體製程,相關的研究因此而變得熱門。早期在自旋電子元件中,鐵磁層的磁矩都是沿著膜面排列,因應使用者對記錄密度要求的提升,為了提升記錄層的熱穩定度及降低寫入電流,鐵磁層材料的選擇也從水平式發展成垂直式。因此,如何利用施加電場的方式來操控垂直式自旋電子元件變成了一門重要的課題。
所以本論文前兩個部分著重在材料的選擇。第一個部分我們選用鉻鉬錳合金當底層材料,利用升溫鍍膜的方式成長序化相的鐵鉑合金。具有體心立方(002)織構的鉻鉬錳底層可以促進鐵鉑合金在較低的溫度完成序化,序化之後具有良好的垂直磁異向性。另外,升溫鍍膜的方式讓鐵鉑合金產生大小不一的晶粒,造成過大的表面粗糙度。為了改善此一現象,我們利用電漿的方式來處理鐵鉑合金的表面,並且利用處理過後的鐵鉑合金來測試垂直式穿隧磁阻元件的可行性。
第二個部分是探討具有垂直磁異向性的鈷鐵硼合金薄膜。近幾年,很多研究團隊都發現鈷鐵硼合金厚度很薄的時候會具有垂直磁異向性,根據理論推測,此垂直磁異向性來自於鐵原子與鄰近氧化物的氧原子產生混成軌域;這部份我們的貢獻在於利用實驗的方式來驗證此一說法。利用同步輻射光源備有的X光磁性圓偏振二相性光譜取得鈷鐵硼合金薄膜中鐵的訊號,加上求和規則計算鐵原子的軌域磁矩,發現不同的鐵、氧軌域混成產生的軌域磁矩變化和鈷鐵硼合金薄膜磁異向性的變化一致,驗證了鈷鐵硼合金薄膜的垂直磁異向性來自於鐵、氧軌域的混成。
第三個部分則是選用特殊的壓電基板來成長鐵鉑合金磊晶薄膜。透過電場的施加讓壓電基板產生應變,利用磁伸縮的特性讓鐵鉑合金薄膜產生磁異向性的變化。另外我們也發現一個有趣的現象,當試片經過正、負偏壓回到零場的時候,鐵鉑合金具有非揮發性的磁異向性變化;透過鐵鉑合金薄膜厚度調整、插入中介層阻隔介面效應,驗證了此一現象來自於基板的鐵電電場效應所造成。利用電場控制鐵鉑合金的磁翻轉行為,同時提供一個非揮發性的異向性改變,讓成果更具有實際應用的價值。
Electric field modulation of magnetic characteristics has drawn much attention due to its potentials for novel spintronic or magnetoelectric devices, such as voltage-driven magnetic random access memories, logic circuits, and so on, with lower power consumption and higher processing speed. In addition, spintronic devices with perpendicularly magnetized ferromagnetic layers have been extensively studied recent years because of their advantages of low critical current density and high thermal stability for current-induced magnetization switching. Therefore, this dissertation focuses on growth of ferromagnetic thin films with perpendicular magnetic anisotropy (PMA) and electric field controlled anisotropy change by using single crystalline piezoelectric substrates.
In the first topic, we fabricated perpendicularly magnetized ordered L10-FePt thin films with a buffer layer of CrMoMn/Pt bi-layers, which were out-of-plane (002) pre-ferred orientation and prepared by in-situ heating deposition on thermally-oxidized silicon substrates. For the purpose of being an electrode in perpendicular magnetic tunnel junc-tions, the plasma treatment with O2/Ar mixture was applied to reduce the surface rough-ness of the L10-FePt thin films. Combined with a MgO barrier and Co/Pt multilayers, the typical magnetic characteristics of pseudo spin valve structure were well demonstrated.
In the second topic, we fabricated a single CoFeB layer with PMA on thermal-ly-oxidized silicon substrates or MgO buffer layers. After annealing, the PMA of the CoFeB layer strongly depended on the oxidation degree of the MgO buffer layers. To in-vestigate the origin of PMA in the CoFeB thin films, x-ray magnetic circular dichroism and sum rule calculation were used to extract the orbital moments per 3d hole (morb/Nh) of Fe in annealed CoFeB layers. The correlation between morb/Nh, depending on the oxidationn time of MgO, and the PMA variation of CoFeB revealed that the PMA of CoFeB was mainly contributed from the interfacial orbital hybridization of the Fe-3d and O-2p.
In the third topic, a perovskite-type single crystalline piezoelectric substrate, (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3(x: 0.28~0.32), was used to grow epitaxial L10-FePt and polycrystalline CoFeB thin films. Since strain would be propagated from the piezoelectric substrate, the out-of-plane coercivity (Hc) of L10-FePt showed a typical butterfly-like loop, companying with an abnormal asymmetric phenomenon, related to the applied electric fields due to the magnetostriction. The thickness dependence of FePt on the out-of-plane Hc revealed that the asymmetric behavior resulted from the ferroelectric field effect of the electric polarized substrate. The Hc difference at zero electric field, back from opposite direction of electric fields, showed a non-volatile behavior and was of significance for applications of voltage-driven solid state devices.
1 M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Physical Review Letters, 61, 2472(1988)
2 B. Dieny, V. S. Speriosu, S. Metin, S. S. Parkin, B. A. Gurney, P. Baumgart, and D. R. Wihoit, Journal of Applied Physics, 69, 4774 (1991)
3 C. G. Duan, J. P. Velev, R. F. Sabirianov, Z. Zhu, J. Chu, S. S. Jaswal, and E. Y. Tsymbal, Physical Review Letters, 101, 137201 (2008)
4 K. Nakamura, R. Shimabukuro, Y. Fujiwara, T. Akiyama, T. Ito, and A. J. Freeman, Physical Review Letters, 102, 187201 (2009)
5 M. Tsujikawa and T. Oda, Physical Review Letters, 102, 247203 (2009)
6 J. Stöhr, H. C. Siegmann, A. Kashuba, and S. J. Gamble, Applied Physics Letters, 94, 072504 (2009)
7 N. N. Negulyaev, V. S. Stepanyuk, W. Hergert, and J. Kirschner, Physical Review Letters, 106, 037202 (2011)
8 J. Z. Sun and D. C. Ralph, Journal of Magnetism and Magnetic Materials, 320, 1227 (2008)
9 N. Nishimura, T. Hirai, A. Koganei, T. Ikeda, K. Okano, Y. Sekiguchi, and Y. Osada, Journal of Applied Physics, 91, 5246 (2002)
10 K. Mizunuma, S. Ikeda, J. H. Park, H. Yamamoto, H. Gan, K. Miura, H. Hasegawa, J. Hayakawa, F. Matsukura, and H. Ohno, Applied Physics Letters, 95, 232516 (2009)
11 M. Yoshikawa, E. Kitagawa, T. Nagase, T. Daibou, M. Nagamine, K. Nishiyama, T. Kishi, and H. Yoda, IEEE Transactions on Magnetics, 44(11), 2573 (2008)
12 T. Seki, S. Mitani, K. Yakushiji, and T. Takanashi, Applied Physics Letters, 88, 172504 (2006)
13 W. H. Butler, X. G. Zhang, T. C. Schulthess, and J. M. MacLare, Physical Review B, 63, 054416 (2001)
14 Y. Xu, J. S. Chen, and J. P. Wang, Applied Physics Letters, 80, 3325 (2002)
15 S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, Nature Materials, 9, 721 (2010)
16 R. Shimabukuro, K. Nakamura, T. Akiyama, and T. Ito. Physica E: Low-dimensional Systems and Nanostructures, 42(4), 1014 (2010)
17 K. Nakamura, T. Akiyama, T. Ito, M. Weinert, and A. J. Freeman, Physical Review B, 81, 220409(R) (2010)
18 M. Weisheit, S. Fähler, A. Marty, Y. Souche, C. Poinsignon, and D. Givord, Science, 315, 349 (2007)
19 T. Maruyama, Y. Shiota, T. Nozaki, K. Ohta, N. Toda, M. Mizuguchi, A. A. Tulapukar, T. Shinjo, M. Shiraishi, S. Mizukami, Y. Ando, and Y. Suzuki, Nature Nanotechnology, 4, 158 (2009)
20 S. S. Ha, N. H. Kim, S. Lee, C. Y. You, Y. Shiota, T. Maruyama, T. Nozaki, and Y. Su-zuki, Applied Physics Letters, 96, 142512 (2010)
21 Y. Shiota, T. Maruyama, T. Nozaki, T. Shinjio, M. Shiraishi, Y. Suzuki, Applied Physics Express, 2, 063001 (2009)
22 T. Nozaki, Y. Shiota, M. Shiraishi,T. Shinjo, and Y. Suzuki, Applied Physics Letters, 96,022506 (2010)
23 M. Endo, S. Kanai, S. Ikeda, F. Matsukura, and H. Ohno, Applied Physics Letters, 96, 212503 (2010)
24 C. W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, Journal of Applied Physics, 103, 031101 (2008)
25 M. Hansen, Constitution of Binary Alloys, McGraw-Hill, New York, 1958
26 B. D. Cullity, Introduction to Magnetic Materials, Addison-Wesley Pub. Co., 1972
27 R. Jansen, Journal of Physics D: Applied Physics, 36, R289 (2003)
28 S. Okamoto, N. Kikuchi, O. Kitakami, T. Miyazaki, and Y. Shimada, Physical Review B, 66, 024413 (2002).
29 B. M. Lairson, M. R. Visokay, E. E. Marinero, R. Sinclair, and B. M. Clemens, Journal of Applied Physics, 74, 1922 (1993).
30 A. Cebollada, D. Weller, J. Sticht, G. R. Harp, R. F. C. Farrow, R. F. Marks, R. Savoy, and J. C. Scott, Physical Review B, 50, 3419 (1994).
31 M. R. Visokaya and R. Sinclair, Applied Physics Letters, 66, 1692 (1995).
32 Y. N. Hsu, S. Jeong, D. N. Lambeth, and D. Laughlin, IEEE Transactions on Magnetics, 36, 2945 (2000)
33 Y.N. Hsu, S. Jeong, D. Laughlin, and D. N. Lambeth, Journal of Applied Physics, 89,7068 (2001)
34 J. C. Shih, H. H. Hsiao, J. L. Tsai, and T.S. Chin, IEEE Transactions on Magnetics, 37,1280 (2001)
35 Y. Xu, J. P. Wang, C. K. Pock, X. Cheng, Z. S. Shan, and T. C. Chong, IEEE Transactions on Magnetics, 37, 1491 (2001)
36 J. S. Chen, Y. Xu, and J. P. Wang, Journal of Applied Physics, 93, 1661 (2003)
37 B. C. Lim, J. S. Chen, and J. P. Wang, Journal of Magnetism and Magnetic Materials, 271, 431 (2004)
38 M. Hagiuda, S. Mitani, T. Seki, K. Yakushiji, T. Shima, K. Takanashi, Journal of Mag-netism and Magnetic Materials, 310 ,1905 (2007)
39 K. Nishiyama, T. Nagase, M. Nakayama, M. Yoshikawa, E. Kitagawa, T. Daibou, M. Nagamine, T. Kai, and H. Yoda, 11th Joint MMM-Intermag conference, ID#EF-07
40 D. D. Djayaprawira, K. Tsunekawa, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki, and K. Ando, Applied Physics Letters, 86, 092502 (2005)
41 J. H. Jung, S. H. Lim, and S. R. Lee, Applied Physics Letters, 96, 042503 (2010)
42 L. E. Nistor, B. Rodmacq, S. Auffret, and B. Dieny, Applied Physics Letters, 94, 012512 (2009)
43 J. H. Jung, S. H. Lim, and S. R. Lee, Journal of Applied Physics, 108, 113902 (2010)
44 S. Yakata, H. Kubota, Y. Suzuki, K. Yakushiji, A. Fukushima, S. Yuasa, and K. Ando, Journal of Applied Physics, 105, 07D131 (2009)
45 R. H. Koch, J. A. Kathine, and J. Z. Sun, Physical Review Letters, 92, 088302 (2004)
46 S. N. Piramanayagam, Journal of Applied Physics, 102, 011301 (2007)
47 J. M. Hu, Z. Li, J. Wang, and C. W. Nan, Journal of Applied Physics, 107, 093912 (2010)
48 W. G. Wang, M. Li, S. Hageman, and C. L. Chien, Nature Materials, 11, 64 (2012)
49 D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, and H. Ohno, Nature, 455, 515 (2008)
50 D. Chiba, M. Yamanouchi, F. Matsukura, and H. Ohno, Science, 301, 943 (2003)
51 H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, Nature, 408, 944 (2000)
52 K. Shimamura, D. Chiba, S. Ono, S. Fukami, N. Ishiwata, M. Kawaguchi, K. Kobayashi, and T. Ono, Applied Physics Letters, 100, 122402 (2012)
53 T. Seki, M. Kohda, J. Nitta, and K. Takanashi, Applied Physics Letters, 98, 212505 (2011)
54 J. H. Cho, J. Lee, Y. Xia, B. S. Kim, Y. He, M. J. Renn, T. P. Lodge, and C. D. Frisbie, Nature Materials, 7, 900 (2008)
55 M. A. B. H. Susan, T. Kaneko, A. Noda, and M. Watanabe, Journal of the American Chemical Society, 127, 4976 (2005)
56 J. Lee, M. J. Panzer, Y. He, T. P. Lodge, and C. D. Frisbie, Journal of the American Chemical Society, 129, 4532 (2007)
57 D. Chiba, S. Fukami, K. Shimamura, N. Ishiwata, K. Kobayashi, and T. Ono, Nature Materials, 10, 853 (2011)
58 M. C. Schmeider, P. Bressler, P. Schuster, J. Kirschner, J. J. de Miguel, and R. Miranda, Physical Review Letters, 64, 1059 (1990)
59 V. I. Ovchinnikov and L. K. Wang, Physical Review B, 80, 12405 (2009)
60 P. Bruno, Physical Review B, 43, 6015 (1991)
61 J. Kuwata, K. Uchino, and S. Nomura, Ferroelectrics, 37, 579 (1981)
62 J. Kuwata, K. Uchino, and S. Nomura, Japanese Journal of Applied Physics, 21, 1298 (1982)
63 K. Harada, S. Shimanuki, T. Kobayashi, S. Saitoh and Y. Yamashita, Journal of the American Ceramic Society, 81, 2785 (1998)
64 S. E. Park and T. R. Shrout, IEEE Transactions on Ultrasonics, Ferroelectrics and Freqency Control, 44, 1140 (1997)
65 S. E. Park and T. R. Shrout, Journal of Applied Physics, 82, 1804 (1997)
66 H. Fu and R. E. Cohen, Nature, 403, 281 (2000)
67 B. Noheda, D. E. Cox, G. Shirane, S. E. Park, L. E. Cross, and Z. Zhong, Physical Re-view Letters, 86, 3891 (2001)
68 Y. Guo, H. Luo, D. Ling, H. Xu, T. He, and Z. Yin, Journal of Physics: Condensed Matter, 15, L77 (2003)
69 T. R. Shrout, Z. P. Chang, N. Kim, and S. Markgraf, Ferroelectrics Letters, 12, 63 (1990)
70 M. Liu, O. Obi, J. Lou, Y. Chen, Z. Cai, S. Stoute, M. Espanol, M. Lew, X. Situ, K. S. Ziemer, Advanced Functional Materials, 19(11), 1826 (2009).
71 C. Thiele, K. Dörr, O. Bilani, J. Rödel, and L. Schultz, Physical Review B, 75(5),054408 (2007).
72 T. Wu, P. Zhao, M. Bao, A. Bur, J. Hockel, K. Wong, K. Mohanchandra, C. Lynch, and G. Carman, Journal of Applied Physics, 109, 124101 (2011).
73 S. Zhang, Y. G. Zhao, P. S. Li, J. J. Yang, S. Rizwan, J. X. Zhang, J. Seidel, T. L. Qu, Y. J. Yang, Z. L. Luo, Q. He, T. Zou, Q. P. Chen, J. W. Wang, L. F. Yang, Y. Sun, Y. Z. Wu, X. Xiao, X. F. Jin, J. Huang, C. Gao, X. F. Han, and R. Ramesh, Physical Review Letters, 108, 137203 (2012)
74 G. Zhu, K. L. Wong, J. Zhao, P. K. Amiri, K. L. Wang, J. Hockel, G. P. Carman, J. Zhu, and I. Krivorotov, Journal of Applied Physics, 112, 033916 (2012)
75 G. Zhu, K. L. Wong, J. Zhao, P.K. Amiri, J. Zhu, I. Krivorotov, and K. L. Wang, Applied Physics Letters, 101, 202404 (2012)
76 J. H. Kim, K. S. Ryu, J. W. Jeong, and S. C. Shin, Applied Physics Letters, 97, 252508 (2010)
77 C. J. Hsu, J. L. Hockel, and G. P. Carman, Applied Physics Letters, 100, 092902 (2012)
78 B. Zhang, J. S. Chen, and G. M. Chow, IEEE Transactions on Magnetics, 47(10), 4402 (2011)
79 Z. G. Sheng, J. Gao, and Y. P. Sun, Physical Review B, 79, 174437 (2009).
80 S. Foner, Review of Scientific Instruments, 30(7), 548(1959)
81 G. Schutz, W. Wagner, W. Wilhelm, P. Kienle, R. Zeller, R. Frahm, and G. Materlik, Physical Review Letters, 58(7), 737 (1987)
82 J. Stöhr, Y. Wu, B. D. Hermsmeier, M. G. Samant, G. R. Harp, S. Koranda, D. Dunham, and B. P. Tonner, Science, 259(5095), 658(1993)
83 J. Stöhr, Journal of Magnetism and Magnetic Materials, 200(1-3), 470(1999)
84 C. T. Chen, Y. U. Idzerda, H. J. Lin, N. V. Smith, G. Meigs, E. Chaban, G. H. Ho, E. Pellegrin, and F. Sette, Physical Review Letters, 75(1), 152 (1995)
85 B.T. Thole, P. Carra, F. Sette, and G. van der Laan, Physical Review Letters, 68, 1943 (1992)
86 P. Carra, B.T. Thole, M. Altarelli, and X. Wang, Physical Review Letters, 70, 694 (1993)
87 R. Wu, D. Wang, and A. J. Freeman, Physical Review Letters, 71, 3581 (1993)
88 R. Wu and A. J. Freeman, Physical Review Letters, 73, 1994 (1994)
89 G. Y. Guo, H. Ebert, W. M. Temmerman, and P. J. Durham, in Metallic Alloy: Experi-mental and Theoretical Perspectives, edited by J. S. Faulkner (Kluwer Academic, Dor-drecht, 1993); Physical Review B, 50, 3861 (1994)
90 C. Nordling, E. Sokolowski, and K. Siegbahn, Physical Review, 105(5), 1676 (1957)
91 G. Vanderlaan and I. W.Kirkman, Journal of Physics: Condensed Matter, 4(16), 4189 (1992)
92 J. H. Park, C. Park, T. Jeong, M. T. Moneck, and J. G. Zhu, Journal Applied Physics, 103, 07A917 (2008)
93 H. Ohmori, T. Hatori, and S. Nakagawa, Journal Applied Physics, 103, 07A911 (2008)
94 X. W. Li, A. Gupta, G. Xiao, W. Qian, and V. P. Dravid, Applied Physics Letters, 73, 3282 (1998).
95 H. C. Wu, S. K. Arora, O. N. Mryasov, and I. V. Shvets, Applied Physics Letters, 92, 182502 (2008).
96 J. Moritz, F. Garcia, J. C. Toussaint, B. Dieny, and J. P. Nozières, Europhysics Letters, 65, 123 (2004)
97 Y. C. Wu, C. H. Lai, C. C. Chiang, and R. T. Huang, IEEE Transactions on Magnetics, 41, 3199 (2005).
98 M. Descostes, F. Mercier, N. Thromat, C. Beaucaire, and M. Gautier-Soyer, Applied Surface Science, 165, 288 (2000)
99 M. Murugesan, J. C. Bea, C. K. Yin, H. Nohira, E. Ikenaga, T. Hattori, M. Nishijima, T. Fukushima, T. Tanaka, M. Miyao, and M. Koyanagi, Journal of Applied Physics, 104, 074316 (2008)
100 Y. Abe, H. Yanagisawa, and K. Sasaki, Japanese Journal of Applied Physics, 37, 4482 (1998)
101 W. C. Tsai, J. W. Lee, C. H. Chen, C. H. Lai, C. T. Yen, and Y. H. Wang, Journal of Ap-plied Physics, 109, 07C724 (2011)
102 W. B. Zeper, F. J. A. M. Greidanus, P. F. Carcia, and C. R. Fincher, Journal of Applied Physics, 65, 4971 (1989)
103 S. I. Nakai, T. Mituishi, H. Sugawara, H. Maezawa, T. Matsukawa, S. Mitani, K. Ya-masaki, and T. Fujikawa, Physical Review B, 36, 9241 (1987)
104 C. J. Liu, J. L. Chen, L. C. Huang, Z. R. Lin, and C. L. Chang, Journal of Applied Physics, 102, 014908 (2007)
105 K. Oguz, P. Jivrajka, M. Venkatesan, G. Feng, and J. M. D. Coey, Journal of Applied Physics, 103, 07B526 (2008)
106 S. Y. Jang, S. H. Lim, and S. R. Lee, Journal of Applied Physics, 107, 09C707 (2010)
107 D. H. Kim, H. J. Lee, G. Kim, Y. S. Koo, J. H. Jung, H. J. Shin, J. Y. Kim, and J. S. Kang, Physical Review B, 79, 033402 (2009)
108 N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Katayama, M. Nývlt, and Y. Suzuki, Physical Review Letters, 81, 5229 (1998)
109 J. Stöhr and H. Konig, Physical Review Letters, 75, 3748 (1995)
110 X. G. Zhang, W. H. Butler, and A. Bandyopadhyay, Physical Review B, 68, 092402 (2003)
111 H. X. Yang, M. Chshiev, B. Dieny, J. H. Lee, A. Manchon, and K. H. Shin, Physical Review B, 84, 054401 (2011)
112 L. H. Diez, A. B. Mantel, O. Michele, L. Vila, P. Warin, A. Marty, L. Ranno, and D. Givord, Applied Physics Letters, 102, 012409 (2013)
113 P. C. McIntyre, C. J. Maggiore, and M. Nastasi, Journal of Applied Physics, 77, 6201 (1995)
114 R. K. Zheng, Y. Wang, J. Wang, K. S. Wong, H. L. W. Chan, C. L. Choy, and H. S. Luo, Physical Review B, 74, 094427 (2006)
115 R. K. Zheng, Y. Wang, H. L. W. Chan, C. L. Choy, H. U. Habermeier, and H. S. Luo, Journal of Applied Physics, 108, 033912 (2010)
116 X. J. Chen, S. Soltan, H. Zhang, and H. U. Habermeier, Physical Review B, 65, 174402 (2002)
117 C. A. Perroni,V. Cataudella,G. De Filippis,G. Iadonisi,V. Marigliano Ramaglia, and F. Ventriglia, Physical Review B, 68, 224424 (2003)
118 S. Mathews, R. Ramesh, T. Venkatesan, and J. Benedetto, Science, 276, 238 (1997)
119 Z. Wen, C. Li, D. Wu, A. Li, and N. Ming, Nature Materials, 12, 617 (2013)