簡易檢索 / 詳目顯示

研究生: 黃彥文
Huang, Yen-Wen
論文名稱: 果蠅動態行為之影像追蹤研究
Image Tracking Study on Drosophila Behavior
指導教授: 蔡宏營
Tsai, Hung-Yin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 91
中文關鍵詞: 果蠅求偶行為辨識果蠅動態影像追蹤
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是利用機器人視覺自動化分析昆蟲實驗平台,透過影像分析技術,進行複數果蠅位置追蹤及求偶行為辨識。藉由高斯混合模型進行外觀形態辨識,定義果蠅性別、大小、面向方位、翅膀角度等資訊,並能辨識出位於側上壁之果蠅。透過運動模型預測與面向方位變化之限制,同時追蹤複數果蠅之位置。
    利用質心位置之相對關係,將相連時完整的公果蠅影像取出,並藉由翅膀角度限制及身體大小限制,分析出正確的外觀形態。因此能有效地分析求偶期間,兩隻或三隻果蠅相連時,其公果蠅之行為特徵。透過實際影像分析結果,能正確辨識公果蠅之振翅行為,以及公果蠅貼近母果蠅尾部時試探母果蠅意願之行為。其中振翅行為之正確辨識率高達95.8%,且試探行為之正確辨識率亦近乎於90%。因此,能夠同時分析兩隻以上之果蠅求偶行為,進行更複雜之自動化生物行為分析,有效降低人力成本及分析時間。


    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 簡介 1 1.2 文獻回顧 2 1.2.1 果蠅外觀與行為分析 2 1.2.2 單體果蠅行為追蹤 3 1.2.3 多體果蠅行為追蹤 3 1.3 研究方法 11 第二章 數位影像分析 13 2.1 動態影像追蹤 13 2.2 影像特徵辨識 17 2.3 特徵點選取 26 2.4 機率統計分析 37 2.5 結語 41 第三章 複數果蠅位置追蹤及行為分析技術 44 3.1 實驗裝置 44 3.2 果蠅外觀形態辨識 46 3.3 果蠅追蹤技術 51 3.3.1 速度差分預測模型 53 3.3.2 配對方式 54 3.3.3更新果蠅外觀參數 56 3.4 果蠅求偶行為辨識 60 第四章 實驗結果與討論 64 4.1 相連果蠅之外觀形態辨識 65 4.2 求偶行為特徵辨識 66 第五章 結論 85 5.1 本研究之貢獻 85 5.2 本研究的實用價值及未來發展方向 86 參考文獻 88

    [1] B. R. Jasny, et al., "From Genes to Social Behavior," Science, vol. 322, p. 891, 2008.
    [2] C. Holden, "Parsing the Genetics of Behavior," Science, vol. 322, pp. 892-895, 2008.
    [3] G. E. Robinson, et al., "Genes and Social Behavior," Science, vol. 322, pp. 896-900, 2008.
    [4] B. J. Dickson, "Wired for Sex: The Neurobiology of Drosophila Mating Decisions," Science, vol. 322, pp. 904-909, 2008.
    [5] H.-H. Lin, et al., "A Map of Olfactory Representation in the Drosophila Mushroom Body," Cell, vol. 128, pp. 1205-1217, 2007.
    [6] J.-R. Martin, "A portrait of locomotor behaviour in Drosophila determined by a video-tracking paradigm," Behavioural Processes, vol. 67, pp. 207-219, 2004.
    [7] R. B. Ramazani, et al., "Computer automated movement detection for the analysis of behavior," Journal of Neuroscience Methods, vol. 162, pp. 171-179, 2007.
    [8] K. Branson, et al., "High-throughput ethomics in large groups of Drosophila," Nature Methods, vol. 6, pp. 451-457, 2009.
    [9] H. Dankert, et al., "Automated monitoring and analysis of social behavior in Drosophila," Nature Methods, vol. 6, pp. 297-303, 2009.
    [10] K. Ikeda, et al., "Roles of the mushroom bodies in olfactory learning and photoperiodism in the blow fly Protophormia terraenovae," Journal of Insect Physiology, vol. 51, pp. 669-680, 2005.
    [11] R. J. Greenspan, et al., "Sleep and the fruit fly," Trends in Neurosciences, vol. 24, pp. 142-145, 2001.
    [12] W. Liu, et al., "Amnesiac regulates sleep onset and maintenance in Drosophila melanogaster," Biochemical and Biophysical Research Communications, vol. 372, pp. 798-803, 2008.
    [13] J. Agosto, et al., "Modulation of GABAA receptor desensitization uncouples sleep onset and maintenance in Drosophila," Nature Neuroscience, vol. 11, pp. 354-359, 2008.
    [14] R. J. Greenspan and J.-F. Ferveur, "COURTSHIP IN DROSOPHILA," Annual Review of Genetics, vol. 34, pp. 205-232, 2000.
    [15] M. Reif, et al., "Evolutionary significance of courtship conditioning in Drosophila melanogaster," Animal Behaviour, vol. 63, pp. 143-155, 2002.
    [16] D. Gavrila and S. Munder, "Multi-cue pedestrian detection and tracking from a moving vehicle," International Journal of Computer Vision, vol. 73, pp. 41-59, 2007.
    [17] S. Zehang, et al., "On-road vehicle detection: a review," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 28, pp. 694-711, 2006.
    [18] T. B. Moeslund, et al., "A survey of advances in vision-based human motion capture and analysis," Comput. Vis. Image Underst., vol. 104, pp. 90-126, 2006.
    [19] B. D. Lucas and T. Kanade, "An iterative image registration technique with an application to stereo vision," presented at the Proceedings of the 7th International Joint Conference on Artificial Intelligence (IJCAI '81), 1981.
    [20] B. K. P. Horn and B. G. Schunck, "Determining optical flow," Artificial Intelligence, vol. 17, pp. 185-203, 1981.
    [21] J.L.Barron and N.A.Thacker, "Tutorial: Computing 2D and 3D optical flow," TINA Memos: Human and Machine Vision, 2004.
    [22] H. Weiming, et al., "A survey on visual surveillance of object motion and behaviors," Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, vol. 34, pp. 334-352, 2004.
    [23] S. Y. Elhabian, et al., "Moving object detection in spatial domain using background removal techniques - State-of-Art," Recent Patents on Computer Science, vol. 1, pp. 32-54, 2008.
    [24] H. Fu-Yuan, et al., "An effective detection algorithm for moving object with complex background," in Machine Learning and Cybernetics, 2005. Proceedings of 2005 International Conference on, vol. 8, pp. 5011-5015, 2005.
    [25] N. Bocheva, "Detection of motion discontinuities between complex motions," Vision Research, vol. 46, pp. 129-140, 2006.
    [26] I. Haritaoglu, et al., "W4: Real-time surveillance of people and their activities IS - 8," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, pp. 809-830, 2000.
    [27] A. Kale, et al., "Identification of humans using gait," Image Processing, IEEE Transactions on, vol. 13, pp. 1163-1173, 2004.
    [28] A. SAMAL and P. A. IYENGAR, "Human face detection using silhouettes," International Journal of Pattern Recognition and Artificial Intelligence, vol. 9, pp. 845-867, 1995.
    [29] Y.Sumi and Y.Ohata, "Detection of face orientation and facial components using distributed appearance modeling," Proceeding of International Workshop on Automatic Face and Gesture Recognition, pp. 254-259, 1995.
    [30] A. L. Yuille, et al., "Feature extraction from faces using deformable templates," International Journal of Computer Vision, vol. 8, pp. 99-111, 1992.
    [31] 周政宏, 神經網路-理論與務實, 松崗, 1995.
    [32] H. A. Rowley, et al., "Neural network-based face detection," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 20, pp. 23-38, 1998.
    [33] M. A. Turk and A. P. Pentland, "Face recognition using eigenfaces," in Computer Vision and Pattern Recognition, 1991. Proceedings CVPR '91., IEEE Computer Society Conference on, pp. 586-591, 1991.
    [34] H. Yu and J. Yang, "A direct LDA algorithm for high-dimensional data -- with application to face recognition," Pattern Recognition, vol. 34, pp. 2067-2070, 2001.
    [35] Y. Kin Choong and R. Cipolla, "A probabilistic framework for perceptual grouping of features for human face detection," in Automatic Face and Gesture Recognition, 1996., Proceedings of the Second International Conference on, pp. 16-21, 1996.
    [36] K. K. Sung and T. Poggio, "Example-based learning for view-based human face detection," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 20, pp. 39-51, 1998.
    [37] A. V. Nefian and M. H. Hayes, III, "An embedded HMM-based approach for face detection and recognition," in Acoustics, Speech, and Signal Processing, 1999. ICASSP '99. Proceedings., 1999 IEEE International Conference on, vol.6, pp. 3553-3556, 1999.
    [38] H. Schneiderman and T. Kanade, "Probabilistic modeling of local appearance and spatial relationships for object recognition," presented at the Conference on Computer Vision and Pattern Recognition(CVPR '98), 1998.
    [39] M. F. Augusteijn and T. L. Skufca, "Identification of human faces through texture-based feature recognition and neural network technology," in Neural Networks, 1993., IEEE International Conference on, vol.1, pp. 392-398, 1993.
    [40] 王健權, "以數位影像處理搭配動態攝影機做即時人臉追蹤之研究," 國立成功大學電機工程學系碩士論文, pp. 1-54, 2002.
    [41] S. M. Smith and J. M. Brady, "SUSAN—A new approach to low level image processing," International Journal of Computer Vision, vol. 23, pp. 45-78, 1997.
    [42] D. G. Lowe, "Distinctive image features from scale-invariant keypoints," International Journal of Computer Vision, vol. 60, pp. 91-110, 2004.
    [43] H. Hotelling, "Analysis of a complex of statistical variables into principal components," The Journal of Educational Psychology, vol. 24, pp. 498-520, 1933.
    [44] F. N. Hamada, et al., "An internal thermal sensor controlling temperature preference in Drosophila," Nature, vol. 454, pp. 217-220, 2008.
    [45] T. Sakai and N. Ishida, "Circadian rhythms of female mating activity governed by clock genes in Drosophila," Proceedings of the National Academy of Sciences of the United States of America, vol. 98, pp. 9221-9225, 2001.
    [46] T. Liu, et al., "Increased Dopamine Level Enhances Male-Male Courtship in Drosophila," The Journal of Neuroscience, vol. 28, pp. 5539-5546, 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE