研究生: |
賴彥廷 Yen-Ting Lai |
---|---|
論文名稱: |
以分子動力模擬方法研究植物非特異性脂質傳送蛋白 Molecular Dynamics Simulations of Plant Non-specific Lipid Transfer Proteins |
指導教授: |
呂平江
Ping-Chiang Lyu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 52 |
中文關鍵詞: | 分子動力模擬 、非特異性脂質傳送蛋白 |
外文關鍵詞: | molecular dynamics simulation, lipid transfer protein |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
植物非特異性脂質傳送蛋白 (Nonspecific lipid transfer proteins; nsLTPs) 是小分子量且帶正電的蛋白質,這一種蛋白質在 in vivo 中可以結合並且傳送脂質,依照分子量可以再將這一類蛋白質細分為兩小類,分別是分子量約 9 kDa 的 nsLTP1 以及分子量約 7 kDa 的 nsLTP2,從實驗解析出來的蛋白質結構中可以發現一個親脂性腔洞,以封閉或穿透的形式存在 nsLTPs 中,和脂質結合狀態下的 nsLTPs 分子結構亦被解析到原子等級的解析度,從這些結構中可以發現一個或兩個脂質分子位於親脂性腔洞中,目前對於 nsLTPs 分子結構的瞭解僅來自於這些經實驗解析出來平均結構,然而蛋白質及脂質之間的分子辨識是一個動態的過程,並且蛋白質的動態性質在結合脂質分子之後亦會有所改變,因此分子動力模擬 (Molecular dynamics simulation; MD simulation) 的技術是相當適合用來研究脂質所引起的蛋白質動態性質之改變,經由 MD simulations 以及針對其產生資料的分析,我們對 nsLTPs 的分子構形空間進行取樣,並詳細的描述這一蛋白質的詳細動態性質,更進一步我們利用了分子結合自由能的計算解釋了脂質分子的結合效應,在這篇研究報告中 MD simulation 的方法提供了其他實驗所難以達到的寶貴資訊。
Plant nonspecific lipid transfer proteins (nsLTPs) are small and positively charged proteins. This class of protein is notable for the ability to transfer lipid molecules in vitro. NsLTPs can be further divided into two subclasses according to their molecular weight, namely nsLTP1 (~9 kDa) and nsLTP2 (~7 kDa). Structures of nsLTPs in atomic resolution revealed that a hydrophobic cavity, either embedded in the interior or existed as a tunnel, can be found in this class of proteins. Structures of nsLTPs with one or two lipid molecules bound to the hydrophobic cavity were also solved to atomic resolution. Most understanding about the structural properties of plant nsLTPs were based on these static images. However, due to the fact that molecular recognition is a dynamical process and the binding of lipid molecules may also affect the dynamical behavior of nsLTPs. The techniques of molecular dynamics simulation are very suitable for the investigation of lipid-binding induced behavior changes. Through the molecular dynamics simulations and the following analyses, the conformational space of nsLTPs was sampled and the dynamical properties of the proteins were elaborated. More specifically, the effects of lipid molecule binding were also investigated by free energy calculation. The MD simulations thus provide insight into the structural dynamics which were difficult to achieve by other experimental procedures.
1. Kader, J. C. (1996). Lipid-Transfer Proteins in Plants. Annu Rev Plant Physiol Plant Mol Biol 47, 627-654.
2. Boissy, G., O'Donohue, M., Gaudemer, O., Perez, V., Pernollet, J. C. & Brunie, S. (1999). The 2.1 A structure of an elicitin-ergosterol complex: a recent addition to the Sterol Carrier Protein family. Protein Sci 8, 1191-9.
3. Tassin, S., Broekaert, W. F., Marion, D., Acland, D. P., Ptak, M., Vovelle, F. & Sodano, P. (1998). Solution structure of Ace-AMP1, a potent antimicrobial protein extracted from onion seeds. Structural analogies with plant nonspecific lipid transfer proteins. Biochemistry 37, 3623-37.
4. Blein, J. P., Coutos-Thevenot, P., Marion, D. & Ponchet, M. (2002). From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defence mechanisms. Trends Plant Sci 7, 293-6.
5. Shin, D. H., Lee, J. Y., Hwang, K. Y., Kim, K. K. & Suh, S. W. (1995). High-resolution crystal structure of the non-specific lipid-transfer protein from maize seedlings. Structure 3, 189-99.
6. Lee, J. Y., Min, K., Cha, H., Shin, D. H., Hwang, K. Y. & Suh, S. W. (1998). Rice non-specific lipid transfer protein: the 1.6 A crystal structure in the unliganded state reveals a small hydrophobic cavity. J Mol Biol 276, 437-48.
7. Han, G. W., Lee, J. Y., Song, H. K., Chang, C., Min, K., Moon, J., Shin, D. H., Kopka, M. L., Sawaya, M. R., Yuan, H. S., Kim, T. D., Choe, J., Lim, D., Moon, H. J. & Suh, S. W. (2001). Structural basis of non-specific lipid binding in maize lipid-transfer protein complexes revealed by high-resolution X-ray crystallography. J Mol Biol 308, 263-78.
8. Liu, Y. J., Samuel, D., Lin, C. H. & Lyu, P. C. (2002). Purification and characterization of a novel 7-kDa non-specific lipid transfer protein-2 from rice (Oryza sativa). Biochem Biophys Res Commun 294, 535-40.
9. Samuel, D., Liu, Y. J., Cheng, C. S. & Lyu, P. C. (2002). Solution structure of plant nonspecific lipid transfer protein-2 from rice (Oryza sativa). J Biol Chem 277, 35267-73.
10. Pons, J. L., de Lamotte, F., Gautier, M. F. & Delsuc, M. A. (2003). Refined solution structure of a liganded type 2 wheat nonspecific lipid transfer protein. J Biol Chem 278, 14249-56.
11. Lerche, M. H., Kragelund, B. B., Bech, L. M. & Poulsen, F. M. (1997). Barley lipid-transfer protein complexed with palmitoyl CoA: The structure reveals a hydrophobic binding site that can expand to fit both large and small lipid-like ligands. Structure 5, 291-306.
12. Cheng, C. S., Chen, M. N., Liu, Y. J., Huang, L. Y., Lin, K. F. & Lyu, P. C. (2004). Evaluation of plant non-specific lipid-transfer proteins for potential application in drug delivery. Enzyme and Microbial Technology 35, 532-539.
13. Wang, W., Donini, O., Reyes, C. M. & Kollman, P. A. (2001). Biomolecular simulations: recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Annu Rev Biophys Biomol Struct 30, 211-43.
14. Karplus, M. & McCammon, J. A. (2002). Molecular dynamics simulations of biomolecules. Nat Struct Biol 9, 646-52.
15. Shea, J. E. & Brooks, C. L., 3rd. (2001). From folding theories to folding proteins: a review and assessment of simulation studies of protein folding and unfolding. Annu Rev Phys Chem 52, 499-535.
16. Warshel, A. & Parson, W. W. (2001). Dynamics of biochemical and biophysical reactions: insight from computer simulations. Q Rev Biophys 34, 563-679.
17. Simonson, T., Archontis, G. & Karplus, M. (2002). Free energy simulations come of age: protein-ligand recognition. Acc Chem Res 35, 430-7.
18. Trylska, J., Tozzini, V. & McCammon, J. A. (2005). Exploring global motions and correlations in the ribosome. Biophys J 89, 1455-63.
19. Bishop, T. C. (2005). Molecular dynamics simulations of a nucleosome and free DNA. J Biomol Struct Dyn 22, 673-86.
20. Stagg, S. M. & Harvey, S. C. (2005). Exploring the flexibility of ribosome recycling factor using molecular dynamics. Biophys J 89, 2659-66.
21. Tama, F. & Brooks, C. L., 3rd. (2002). The mechanism and pathway of pH induced swelling in cowpea chlorotic mottle virus. J Mol Biol 318, 733-47.
22. Freddolino, P. L., Arkhipov, A. S., Larson, S. B., McPherson, A. & Schulten, K. (2006). Molecular dynamics simulations of the complete satellite tobacco mosaic virus. Structure 14, 437-49.
23. Yeh, I. C. & Hummer, G. (2002). Peptide loop-closure kinetics from microsecond molecular dynamics simulations in explicit solvent. J Am Chem Soc 124, 6563-8.
24. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S. & Karplus, M. (1983). Charmm - a Program for Macromolecular Energy, Minimization, and Dynamics Calculations. Journal of Computational Chemistry 4, 187-217.
25. Scott, W. R. P., Hunenberger, P. H., Tironi, I. G., Mark, A. E., Billeter, S. R., Fennen, J., Torda, A. E., Huber, T., Kruger, P. & van Gunsteren, W. F. (1999). The GROMOS biomolecular simulation program package. Journal of Physical Chemistry A 103, 3596-3607.
26. Weiner, P. K. & Kollman, P. A. (1981). Amber - Assisted Model-Building with Energy Refinement - a General Program for Modeling Molecules and Their Interactions. Journal of Computational Chemistry 2, 287-303.
27. Guillot, B. (2002). A reappraisal of what we have learnt during three decades of computer simulations on water. Journal of Molecular Liquids 101, 219-260.
28. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F. & Hermans, J. (1969). Interaction Models for Water in Relation to Protein Hydration. Nature 224, 175-177.
29. Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463-1472.
30. Ryckaert, J. P., Ciccotti, G. & Berendsen, H. J. C. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327-341.
31. Darden, T., York, D. & Pedersen, L. (1993). Particle Mesh Ewald - an N.Log(N) Method for Ewald Sums in Large Systems. Journal of Chemical Physics 98, 10089-10092.
32. Toukmaji, A. Y. & Board, J. A. (1996). Ewald summation techniques in perspective: A survey. Computer Physics Communications 95, 73-92.
33. Berendsen, H. J. C., Postma, J. P. M., Vangunsteren, W. F., Dinola, A. & Haak, J. R. (1984). Molecular-Dynamics with Coupling to an External Bath. Journal of Chemical Physics 81, 3684-3690.
34. Amadei, A., Linssen, A. B. M. & Berendsen, H. J. C. (1993). Essential Dynamics of Proteins. Proteins-Structure Function and Genetics 17, 412-425.
35. Aqvist, J., Medina, C. & Samuelsson, J. E. (1994). A new method for predicting binding affinity in computer-aided drug design. Protein Eng 7, 385-91.
36. Aqvist, J. (1996). Calculation of absolute binding free energies for charged ligands and effects of long-range electrostatic interactions. Journal of Computational Chemistry 17, 1587-1597.
37. Hansson, T., Marelius, J. & Aqvist, J. (1998). Ligand binding affinity prediction by linear interaction energy methods. J Comput Aided Mol Des 12, 27-35.
38. Berendsen, H. J. C., Vanderspoel, D. & Vandrunen, R. (1995). Gromacs - a Message-Passing Parallel Molecular-Dynamics Implementation. Computer Physics Communications 91, 43-56.
39. Lindahl, E., Hess, B. & van der Spoel, D. (2001). GROMACS 3.0: a package for molecular simulation and trajectory analysis. Journal of Molecular Modeling 7, 306-317.
40. Vanbuuren, A. R., Marrink, S. J. & Berendsen, H. J. C. (1993). A Molecular-Dynamics Study of the Decane Water Interface. Journal of Physical Chemistry 97, 9206-9212.
41. Vanbuuren, A. R. & Berendsen, H. J. C. (1993). Molecular-Dynamics Simulation of the Stability of a 22-Residue Alpha-Helix in Water and 30-Percent Trifluoroethanol. Biopolymers 33, 1159-1166.
42. Liu, H., Muller-Plathe, F. & van Gunsteren, W. F. (1995). A Force Field for Liquid Dimethyl Sulfoxide and Physical Properties of Liquid Dimethyl Sulfoxide Calculated Using Molecular Dynamics Simulation. J. Am. Chem. Soc. 117, 4363-4366.
43. Schuttelkopf, A. W. & van Aalten, D. M. (2004). PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 60, 1355-63.
44. van Gunsteren, W. F., Billeter, S. R., Eising, A. A., Hunenberger, P. H., Kruger, P., Mark, A. E., Scott, W. R. P. & Tironi, I. G. (1996). Biomolecular Simulation: The GROMOS96 manual and user guide.
45. Wallace, A. C., Laskowski, R. A. & Thornton, J. M. (1995). LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8, 127-34.
46. Humphrey, W., Dalke, A. & Schulten, K. (1996). VMD: visual molecular dynamics. J Mol Graph 14, 33-8, 27-8.
47. DeLano, W. L. (2002). The PyMOL Molecular Graphics System.
48. Cheng, H. C., Cheng, P. T., Peng, P., Lyu, P. C. & Sun, Y. J. (2004). Lipid binding in rice nonspecific lipid transfer protein-1 complexes from Oryza sativa. Protein Sci 13, 2304-15.
49. Cheng, C.-S. (2006). Structure, function and application of plant nonspecific lipid transfer protein. PhD Thesis.