簡易檢索 / 詳目顯示

研究生: 張佐吉
Tso-Chi Chang
論文名稱: 晶片級微測試儀器之開發及其於薄膜材料機械性質量測之應用
The Development of Chip-scale Micro-Instrument and It's Application on Determining Thin Films Material Properties
指導教授: 方維倫
Wei-leun Fang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 86
中文關鍵詞: 微測試儀器薄膜材料機械性質楊氏模數彎曲測試
外文關鍵詞: Micro-Instrument, Thin Films Material Properties, Young's Modulus, Bending Testing
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出了利用微加工製程,於矽晶片上製作微小化的測試儀器,藉由尺寸、出力相容的特性,該儀器被應用來量測薄膜機械性質,以及奈微米尺度之元件的機械特性。此儀器是由數種模組所構成,例如機械結構模組,致動模組,感測模組,積體電路模組,使用者可以根據應用的需求,選擇不同規格與特性的模組,再藉由不同模組的搭配,架構出在設計上具有彈性、製程容易實現等優點之微測試儀器。

    本文以彎曲測試機制之微測試儀器為例,說明各個部份之設計考量點,例如其具備高解析度的力量輸出裝置(致動模組),次微米的位移感測裝置(感測模組),高剛性比之線性支撐彈簧(機械結構模組)等。本文亦針對該儀器之靜態、動態特性及電性進行測試,並使用商用儀器奈米壓痕系統、微機電元件運動分析儀對微測試儀器之力量和位移進行校正,最後利用此測試儀器對單晶矽懸臂樑進行彎曲測試,然後測得單晶矽之楊氏模數為173 GPa,與文獻僅4.8 %的誤差量,証明微測試儀器的可行性。

    本文已成功的將微測試儀器之探頭裸露,使待測的薄膜材料試片不會受到單一種類的限制,未來希望能完成線上測試以量測到不同薄膜材料之機械性質,以發揮此微測試儀器之多功能性,如能再與控制及感測電路整合在一起,將具備即時檢測薄膜材料機械性質的功能。


    圖目錄 ………………………………………………….V 表目錄 ………………………………………………..VIII 第1章 前言 …………………………………………..1 1-1 研究動機 ……………………………………………………1 1-2 文獻回顧 ……………………………………………………1 1-3 研究目標 ……………………………………………………5 第2章 微測試儀器之設計與分析 …………………16 2-1 操作原理 ………………………………………………..16 2-2 參數的萃取 ……………………………………………..16 2-3 基本理論分析 …………………………………………..17 2-3.1 支撐彈簧設計 …………………………………………18 2-3.2 感測元件 ………………………………………………20 2-3.3 致動元件 ………………………………………………22 2-3.4 探針設計 ………………………………………………23 2-4 數值模擬分析結果 ……………………………………...23 2-4.1 梳狀致動元件 …………………………………………24 2-4.2 平板感測元件 …………………………………………24 2-4.3 支撐彈簧剛性 …………………………………………25 第3章 製程與結果 …………………………………46 3-1 SOI晶片部份 ………………………………………………46 3-2 封裝部份 ………………………………………………...47 3-3 製程結果 ………………………………………………...48 第4章 量測與實驗架設 ……………………………58 4-1 支撐彈簧剛性值之校正 ………………………………..59 4-2 梳狀致動器外力輸出值之校正 ………………………...61 4-3 電容感測器位移感測之校正 …………………………...62 4-3.1 量測系統架設 …………………………………………62 4-3.2 量測結果及位移校正 …………………………………63 4-4 彎曲測試法萃取單晶矽之楊氏模數 …………………..65 第5章 結論與未來工作 ……………………………81 5-1 結論 ……………………………………………………..81 5-2 未來工作 ………………………………………………..81 參考文獻 ………………………………………………83

    [1] T. P. Weihs, S. Hong, J. C. Bravman, and W. D. Nix, “Mechanical deflection of cantilver microbeams:A new technique for testing the mechanical properties of thin films,” Journal of Materials Research, 3, No.5, pp. 931-942, 1988.
    [2] W. D. Nix, “Mechanical properties of thin films,” Metallurgical Transaction A, 20A, pp. 2217-2245, 1989.
    [3] C. Serre, A. P. Rodriguez, J.R. Morante, P. Gorostiza, and J. Esteve, “Determination of micromechanical properties of thin films by beam bending measurements with an Atomic Force Microscope,” Sensors and Actuators A, 67, pp. 215-219, 1998.
    [4] S. Sundararajan, and B. Bhushan, “Development of AFM-based techniques to measure mechanical properties of nanoscale structures,” Sensors and Actuators A, 101, pp. 338-351, 2002.
    [5] X. Li, and B. Bhushan, “Fatigue studies of nanoscale structures for MEMS/NEMS applications using nanoindentation techniques,” Surface and Coatings Technology, 163-164, pp. 521-526, 2003.
    [6] K. P. Larsen , A. A. Rasmussen, Jan T. Ravnkilde, Morten Ginnerup ,and Ole Hansen, “MEMS device for bending test : measurements of fatigue and creep of electroplated nickel,” Sensors and Actuators A, 103, pp. 156-164, 2003.
    [7] M. A. Haque, and M. T. A. Saif, “Microscale materials testing using MEMS actuators,” Journal of Microelectromechanical Systems, 10, No.1, 2001.
    [8] M. A. Haque, and M. T. A. Saif, “A review of MEMS-Based microscale and nanoscale tensile and bending testing,” Society for experimental mechanics, 43, pp. 248-255, 2003.
    [9] 徐昌駿, “奈米壓痕系統於微懸臂樑彎矩測試之研究,” 國立清華大學動機系碩士論文, 2004.
    [10] W. N. Sharpe, B. Yuan, and R. L. Edwards, “A new technique for measuring the mechanical properties of thin films,” Journal of Microelectromechanical Systems, 6, No.3, 1997.
    [11] K. Sato, T. Yoshioka, T. Ando, M. Shikida, and T. Kawabata, “Tensile testing of silicon film having different crystallographic orientations carried out on a silicon chip,” Sensors and Actuators A, 70, pp. 148-152, 1998.
    [12] T. Yoshioka, T. Ando, M. Shikida, and K. Sato, “Tensile testing of SiO2 and Si3N4 films carried out on a silicon chip,” Sensors and Actuators A, 82, pp.291-296, 2000.
    [13] T. Ando, M. Shikida, and K. Sato, “Tensile-mode fatigue testing of silicon films as structural materials for MEMS,” Sensors and Actuators A, 93, pp. 70-75, 2001.
    [14] T. Ando, X. Li, S. Nakao, T. Kasai, M. Shikida, and K. Sato, “Effect of crystal orientation on fracture strength and fracture toughness of single crystal silicon,” IEEE MEMS’04, Maastricht, Netherlands, 2004, pp. 177-180.
    [15] M. T. A. Saif, and N. C. MacDonald, “Measurement of forces and spring constants of micxroinstruments,” American Institute of Physics, 69, pp. 1410-1422, 1998.
    [16] W. C. Oliver, and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research, 7, No.6, pp. 1564-1583, 1992.
    [17] W. C. Oliver, and J. B. Pethica, “Method for continuous determination of the elastic stiffness of contact between two bodies,” United States Patent, No.4848141, 1989.
    [18] X. Li, and B. Bhushan, “A review of nanoindentation continuous stiffness measurement technique and its applications,” Materials Characterization, 48, pp. 11-36, 2002.
    [19] K. E. Petersen, and C. R. Guarnieri, “Young’s modulus measurements of thin films using micromechanics,” Journal of Applied Physics, 50, pp. 6761-6766, 1979.
    [20] L. Kiesewetter, J. M. Zhang, D. Houdeau, and A. Steckenborn, “Determination of Young's moduli of micromechanical thin films using the resonance method,” Sensors and Actuators A, 35, pp. 153-159, 1992.
    [21] C. L. Muhlstein, S. B. Brown, and R. O. Ritchie, “High-Cycle Fatigue of Polycrystalline Silicon Thin Films in Laboratory Air,” Mat. Res. Soc. Symp. Proceeding, 657, 2001.
    [22] R. R. Craig, Jr., Mechanics of Materials, 2nd edition, John Wiley & Sons, 1999.
    [23] 鄒慶福, “平坦微機械結構之設計、製造與測試,” 國立清華大學動機系博士論文, 2003.
    [24] R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacement,” Journal of Micromechanical and Microengineering, 6, pp. 320-329, 1996.
    [25] J.-L. A. Yeh, C.-Y. Hui, and N. C. Tien, “Electrostatic model for an asymmetric combdrive,” Journal of Microelectromechanical systems, 9, No.1, pp. 126-135, 2000.
    [26] http://www.ee.ucla.edu/~wu/
    [27] R. R. Craig, Jr., Mechanics of Materials, 2nd edition, John Wiley & Sons, 1999.
    [28] http://www.memsnet.org/material/
    [29] A. H. Nayfen, D. T. Mook, Nonlinear Oscillations, Wiley,1979.
    [30] H.-H. Hu, and W. Fang, “A novel (111) single-crystal-silicon accelerometer using parallel-connected parallel plate capacitance” IEEE MEMS’04, Maastricht, Netherlands, 2004, pp. 597-600.
    [31] http://www.iceweb.com.au/Analyzer/humidity_sensors.html
    [32] http://www.irvine-sensors.com

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE