簡易檢索 / 詳目顯示

研究生: 許高毓
Kao-Yu Hsu
論文名稱: 光繞射於微結構黏著檢測之應用
Microstructures Stiction Testing Using Light Diffraction Method
指導教授: 方維倫
Weileun Fang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 69
中文關鍵詞: 黏著黏著檢測光學快速檢測
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現有的檢測黏著方法,如液體接觸角、粗糙度或懸臂樑陣列測試,皆必須間接依賴電子顯微鏡、三次元干涉儀等儀器記錄結構狀態,才能做判斷,固難以自動化。本論文提出一種可利用光學檢測黏著的機械結構,由懸浮與固定高度結構穿插構成。當黏著產生時,因懸浮結構貼於表面,致使結構間距較原間距大,其繞射光點間距會隨之變小;反之若無黏著時,結構間距則維持原設定,其光點間距較大。用此光學效果作黏著檢測,可由簡易的光學變化,直接判斷其黏著情形,實現快速檢測的目的,也提高機械自動量測的可行性。


    第1章 序論 1 1-1 前言 1 1-2 文獻回顧 2 1-2.1 微結構黏著成因 2 1-2.2 微結構黏著改善 6 1-2.3 微結構黏著檢測 7 1-2.4 光柵閥 (GLV) 8 1-3 研究目標 10 第2章 元件設計與分析 20 2-1 光學效果的檢測結構設計 20 2-2 懸臂樑的尺寸設計 22 2-3 檢測黏著的方式 27 第3章 製程結果 35 3-1 製程步驟 35 3-2 製程結果 36 3-2.1 結構製程結果 36 3-2.2 懸浮結構及固定高度結構之外形 38 第4章 量測結果 45 4-1 量測懸浮結構黏著的結果 45 4-2 光學效果量測 46 4-2.1 結構釋放後黏著的光學量測 47 4-2.2 使用中黏著的光學量測 48 第5章 結論與未來工作 55 5-1 結論 55 5-2 未來工作 56 參考文獻 61

    [1]H. C. Nathanson, and J. Guldberg, “Topologically structured thin films in semiconductor device operation,” Physics of Thin Films, 8, pp. 251-298, 1975.
    [2]H. Guckel, and D. W. Burns, “Fabrication of micromechanical devices from polysilicon films with smooth surfaces,” Journal of Sensors Actuators, 20, pp 117-22, 1989.
    [3]P. R. Scheeper, J. A. Voorthuyzen, and P. Bergveld, “Surface forces in micromachined structures,” 2nd Workshop on micromachining, Berlin, Germany, 1990, pp 26-31.
    [4]R. Alley, R. T. Howe, and K. Komvopoulos, “The effect of release-etch processing on surface microstructure stiction,” International Workshop on Solid-State Sensors and Actuators, SC, June, 1992, pp 202-207.
    [5]H. Guckel , J. J. Sniegowski, T. R. Christenson, S. Mohney, and T. F. Kelly, “Advances in processing techniques for silicon micromechanical devices with smooth surfaces,” Workshop on Micro Electromechanical Systems, Salt Lake City, Utah, Feb 1998, pp 71-75.
    [6]M. Orpana and A. O. Korhonen, “Control of residual stress of polysilicon thin films by heavy doping in surface micromechining,” Transducers’ 91, 1991, pp. 957-960.
    [7]N. Takeshimo, K. J. Gabriel, and M. Ozaki, “Electrostatic parallelogram actuators,” Transducers’ 91, 1991, pp. 63-66.
    [8]C. H. Mastrangelo, and C. H. Hsu, “Mechanical stability and adhesion of microstructures under capillary forces,” IEEE Journal of Microelectro mechanical Systems. 2, pp 33-43, 1993.
    [9]R. Legtenberg, E. Berenschot, T. Lammerink, and M. Elwenspoek, “An electrostatic axial gap wobble motor,” The 8th international Conference on Solid-State Sensors and Actuators, 1995, pp 404-407.
    [10]N. R. Tas, R. Legtenberg, J. W. Berenschot, M. C. Elwenspoek , and J. H. J. Fluitman, “The electrostatic shuffle motor,” Micromechanics Europe Workshop, 1995, pp 128-131.
    [11]N. Tas, T. Sonnenberg, H. Jansen, R. Legtenberg, and M.Elwenspoek,“Stiction in surface micromachining,” Journal of Micromechanical Microeng, 6, pp. 385-397,1996.
    [12]J.N. Israelachvili, “Intermolecular and Surface Forces,” (London: Academic) ,1992.
    [13]P. R. Scheepers, J. A. Voorthuyzen, W. Olthuis, “Investigation of attractive forces between PECVD silicon nitride microstructures and an oxidized silicon substrate,” Sensors and Actuators, 1992, pp. 231-239.
    [14]K. Deng, and W.H. Ko, “A study of static friction between silicon and silicon compounds,” Journal of Micromech. Microeng, 2, pp 14-20,1992.
    [15]R. Stengl, T. Tan and U. Gosele, “A model for the silicon wafer bonding process,” Japanese Journal of Applied Physics, 28,pp. 1735-1741, 1989.
    [16]G. A. C. M. Spierings, and J. Haisma, “Diversity and interfacial phenomena in direct bonding,” Symposium on Semiconductor Wafer Bonding, 1991, pp 18-32.
    [17]C. J. Kim, A. P. Pisano, and R. S. Muller, “Polysilicon microgripper,” IEEE International Solid-State Sensor and Actuator Workshop ,1990 pp 48-51.
    [18]M. Mita, H. Kawara, and H. Toshiyoshi, “An electrostatic 2-dimensional microgripper for nano structure,” Transducer’91, 1991, pp 610-613.
    [19]J. N. Israelachvili, and D. Tabor, “The measurement of van der Waals dispersion forces in the range 1.5 to 130 nm,” Mathematical and Physical Sciences , pp 19-38, 1972
    [20]W. H. Chu and M. Mehregany, “Microfabricated Tweezers with a large gripping force and a large range of motion,” IEEE International Solid-State Sensor and Actuator Workshop , 1994, pp 107-110.
    [21]G. Greitmann, and R. A. Buser, “ Tactile microgrippr for automated handling of microparts,” Sensor and Actuators, 1996, pp 410-415.
    [22]C. G. Keller, and R. T. Howe, “HEXSIL tweezers for teleoperated micro-assembly,” IEEE MEMS’97,pp 72-77,1997
    [23]C. G. Keller, and R. T. Howe, “Nickel-filled HEXSIL thermally actuated tweezers,” Transducer’95, 1995, pp 376-379.
    [24]Y. Suzuki, “Flexible microgripper and its application to micromeasurement of mechanical and thermal propertis,” IEEE MEMS’96, pp 406-411, 1996.
    [25]A. Mensiassi, B. Hannaford, and M. C. Carrozza, “4-axis electromagnetic microgripper,” International Conf, 1999, pp.2899-2904.
    [26]S. Ballandras, S. Basrour, L. Robert, “Microgrippers fabricated by the LIGA technique,” Sensors and Actuators, 1997,pp 565-57.
    [27]M. C. Carrozza, A. Menciassi, and G. Tiezzi, “The development of a LIGA-microfabricated gripper for micromanipulation tasks,” Journal of Micromechanics and Microengineering, pp 141-143, 1998.
    [28]F. Arai, D. Andou, and Y. Nonoda, “Integrated microendeffector for micromanipulation,” IEEE/ASME Transactions on Mechatronics, ,1998 pp 17-23.
    [29]C. H. Mastrangelo, and G. S. Saloka, “A dry-release method. based on polymer columns for microstructure fabrication,” IEEE Workshop on MEMS, Fort Lauderdale, FL, Feb,1993, pp 77-81.
    [30]W. C. Bigelow, D. L. Pickett, and W. A. Zisman, “Oleophobic monolayers-films adsorbed from solution in non-polar liquids,” Journal of Colloid Science, 1, pp 513-538, 1946.
    [31]M. P. deBoer, M. R. Tabbara, M. T. Dugger. “Measuring and Modeling Electrostatic Adhesion in Micromachines,” TRANSDUCERS '97, Chicago, Illinois, June, 1997, pp.229-232 .
    [32]U. Srinivasan, M. R. Houston, and R. T. Howe, “Alkyltrichlorosilane-Based Self-Assembled Monolayer Films for Stiction Reduction in Silicon Micromachines,” Journal of Microelectromechanical systems, 7, pp 252-256, 1998.
    [33]D. C. Senft and M. T. Dugger, “Friction and wear in surface micromachined tribological test devices,” SPIE, vol.3224, pp 31-38,1997.
    [34]C. H. Mastrangelo, and C. H. Hsu, “A simple experimental technique for the measurement of the work of adhesion of microstructures,” Workshop Solid-State Sens. Actuators, HiltonHead, SC , 1992, pp 208-212.
    [35]P. M. Osterberg, R. K. J. R. Gupta,Gilbert, and S. D. Senturia, “A quantitative model for the measurement of residual stress using electrostatic pull-in of beams,” Solid-State Sensor and Actuator Workshop, 1994, pp 184-188.
    [36]O. Solgaard, “Integrated Semiconductor Light Modulators for Fiber-Optic and Display Applications,” Ph.D. Thesis, Stanford University, 1992.
    [37]R. Apte, F. Sandejas, W. Banyai, and D. Bloom, “Grating Light Valves for High Resolution Displays,” Solid State Sensors and Actuators Workshop, june,1994.
    [38]D. Bloom, “The Grating Light Valve: revolutionizing display technology,” Projection Displays III Symposium, 3013, 1997.
    [39]D. Corbin, D. T. Amm, and R.W. Corigan, , “Grating light valve and vehicle displays ,” In Proceedings of the 5th Annual Flat Panel Display Strategic and Technical Symposium ,1998.
    [40]D. T. Amm, and R. W. Corrigan, “Optical Performance of the Grating Light Valve Technology,” Projection Display V , 3634,pp 71-78, 1999.
    [41]D. T. Amm, and R. W. Corrigan, “5.2: Grating Light Valve™ Technology: Update and Novel Applications,” Presented at Society for Information Display Symposium, Anaheim, CA, May 1998, pp 1-4.
    [42]S. Kunihiko, K. Hiroto , and N.Masato , “Nanometer-order control of MEMS ribbons for blazed Grating Light Valves,” IEEE Conference on Microelectronic Test Structures, 2006.
    [43]E. Tamaki, Y. Hashimoto and O. Leung, “Computer-to-plate printing using the Grating Light Valve device,” Proceedings of SPIE, 5348 , 2004, pp 89.
    [44]C. H. Mastrangelo, “A simple experimental technique for the measurement of the work of adhesion of microstructures,” IEEE Solid State Sensor and Actuator Workshop, 1992, pp 208-212.
    [45]J. M. Gere, and S. P. Timoshenko, “Mechanics of Materials,” New York:PWS-Kent Pub.Co, 1984.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE