簡易檢索 / 詳目顯示

研究生: 洪阡譯
Hong, Qian-Yi
論文名稱: 以補氫退火方式降低以電漿輔助化學氣相沉積法鍍製之高含氮量氮氧化矽薄膜光學特性與機械特性之研究
Using the hydrogen annealing to reduce optical absorption and mechanical loss of the nitride-like Silicon oxynitride thin films fabricated by plasma enhanced chemical vapor deposition
指導教授: 趙煦
Chao, Shiuh
口試委員: 王子敬
Wong, Tsz-King
井上優貴
Inoue, Yuki
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 66
中文關鍵詞: 光學吸收機械損耗光學薄膜補氫退火薄膜鍵結
外文關鍵詞: optical absorption, mechanical loss, optical film, hydrogen annealing, film bond
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雷射干涉重力波偵測天文台(LIGO)目前是使用大型麥克森干涉儀偵測重力波,由於重力波的訊號十分微弱並且又容易受到各種雜訊干擾,所以降低雜訊干擾以利於提高系統靈敏度。薄膜熱擾動雜訊(Brownian coating thermal noise)為影響系統主要雜訊來源之一,並且根據fluctuation-dissipation theorem可以得知此雜訊會與薄膜機械損耗成正比。另外,薄膜的光學特性也是必須考量的因素之一,因此本實驗室主要致力於開發低機械損耗與低光學吸收之薄膜材料。
    本實驗室目前已利用PECVD製作出低折射率的氮氧化矽(SiON)薄膜,並且調變流量製作出製作出高含氮量(nitride-like)與高含氧量(silica-like)薄膜。而本次研究選擇的是nitride-like SiON來進行退火,另外silica-like SiON會由實驗室張伊芃論文會有詳細解說。
    本研究第二章利用補氫退火的方式降低 nitride-like SiON中的Si-鍵(Si-),並且增加退火溫度使N-H鍵斷鍵來使薄膜光學吸收下降。此次研究結果顯示:將nitride-like SiON薄膜放置在500OC的環境下進行補氫退火,得以使光學吸收在1550nm波段下從原先8.39E-6降至2.88E-6。
    從實驗室先前的論文可得知:退火能使低溫下的機械損耗下降。因此本研究第三章將nitride-like SiON薄膜鍍置於矽懸臂上,再將此矽懸臂放置於"500O" C的環境下進行補氫退火,最後將其量測低溫機械損耗並與實驗室先前的數據相比較而後發現:mode 2在溫度在10k時損耗由3.64E-4降至6.62E-5、20K時損耗由5.14E-4降至7.05E-5、120K時損耗則由4.13E-4降至1.64E-5,從上述的數據以驗證退火能夠有效地使機械損耗下降。
    為了更清楚地瞭解:除了N-H鍵與Si-鍵之外,是否有其他鍵結影響SiON薄膜各個波長之光學吸收的可能。本研究於第五章將SiON中的矽氧鍵(Si-O)與氧氫鍵(O-H)吸收波長進行統整,最終即發現:本實驗室所使用的光源波長之吸收近乎不會受到Si-O鍵與O-H鍵的影響。


    Laser Interferometer Gravitational-Wave Observatory (LIGO) observed the gravitational wave by the large Michelson interferometer directly. The signal of the gravitational wave is relatively weak and is easily impacted by noise; consequently, reducing the noise is beneficial to improve the system sensitivity. Brownian coating thermal noise is one of the effect in the system. According to the fluctuation-dissipation theorem, CTN is proportional to the mechanical loss of the material. The low optical absorption of the material can avoid thermal loading of the mirrors. Therefore, our group is mainly working on the material with low mechanical loss and low optical absorption.
    Our group has developed material with low refractive index. We use the PECVD to produce the Silicon Oxynitride (SiON). By varying the gas flow, we are able to produce the nitride-like and silica-like SiON. In this experiment, nitride-like SiON was selected to anneal and measured the optical absorption and the mechanical loss. The silica-like SiON will be explained by the. I. P. Chang [57]
    In the second chapter, Using hydrogen annealing to reduce the silicon dangling bonds in nitride-like SiON thin films and increasing the annealing temperature which breaks the N-H bond. By doing so, we can reduce the optical absorption of the material. The experimental results have shown that nitride-like SiON was annealed at the 500OC, the optical absorption can be reduced from 8.39E-6 to 2.88E-6 in the 1550nm.
    It is known that annealing can reduce the mechanical loss. In the third chapter, the nitride-like SiON was deposited on silicon cantilever, and the silicon cantilever that was placed on silicon cantilever annealed at 500OC for 6hr. The experiment results have shown that the loss of mode 2 is reduced from 3.64E-4 to 6.62E-5 at 10K, 5.14E-4 to 7.05E-5 at 20K, 4.13E-4 to 1.64E-5 at 120K. It can be verified that annealing can effectively reduce the mechanical loss.
    Besides N-H bond and silicon dangling bond, whether other bonds will affect the optical absorption of SiON films at 1064nm、1550nm and 1950nm. In chapter five, we summarize the absorption wavelengths of Si-O bond and O-H bond in SiON film. Finally, the absorption wavelengths of Si-O bond and O-H bond will not affect at 1064nm、1550nm and 1950nm.

    Abstract i 摘要 iii 致謝 iv 目錄 vi 圖目錄 viii 表目錄 xi 第一章 、導論 1 1-1 前言 1 1-2 研究動機 3 第二章 、以補氫退火降低高含氮之氮氧化矽 (nitride-like SiON)薄膜光學特性 6 2-1 SiON薄膜製程介紹 6 2-2 補氫退火之製程介紹 7 2-3 補氫退火動機 8 2-4 改變補氫退火溫度之薄膜分析 11 2-5.1 厚度與鍵結 13 2-5.2 懸鍵密度 16 2-5.3 折射係數與Eg 17 2-5.4 光學吸收 19 2-5 不同時間下補氫退火之薄膜分析 24 2-5.1 厚度與薄膜鍵結 25 2-5.2 薄膜元素組成 25 2-5.3 鍵結密度 27 2-5.4 懸鍵密度 30 2-5.5 折射係數與Eg 31 2-5.6 光學吸收 32 第三章 、以補氫退火降低高含氮之氮氧化矽(nitride-like SiON)薄膜低溫機械特性 36 3-1 機械損耗基本原理 36 3-2 機械損耗量測系統架構 38 3-3 單晶矽懸臂基板製程 40 3-4 高含氮量之SiON薄膜楊式係數與應力分析 43 3-4-1、 薄膜材料之應力分析 43 3-4-2、 薄膜材料之楊氏係數分析 45 第四章 高含氮之氮氧化矽(nitride-ike SiON)薄膜低溫機械特性比較 48 第五章 氮氧化矽薄膜鍵結對光學吸收之研究 52 第六章 總結與未來規劃 56 參考文獻 58

    [1] A. Einstein, “Die grundlage der allgemeinen relativitatstheorie”, Annalen der Physik 49, 769 (1916).
    [2] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Observation of gravitational waves from a binary black hole merger”, Phys. Rev. Lett. 116, 061102 (2016).
    [3] R. Abbott, et al., GWTC-3: Compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run. arXiv: 2111.03606 (2021).
    [4] M. Abernathy, F. Acernese and P. Ajith, Einstein gravitational-wave Telescope conceptual design study: ET-0106C-10, (2011).
    [5] K. Somiya, Detector configuration of KAGRA–the Japanese cryogenic gravitational-wave detector, Class. Quantum Grav. 29, 124007 (2012).
    [6] LIGO Scientific Collaboration, Instrument Science White Paper LIGO—T1600119-v4, 2016.
    [7] LIGO Scientific Collaboration, Instrument Science White Paper 2021, LIGO Document: LIGO-T2100298-v2 (2021).
    [8] H. B. Callen, T. A. Weltont. Irreversibility and generalized noise. Phys. Rev., Jul. 83,34-40 (1951).
    [9] R. F. Greene, H. B. Callen. On the formalism of thermodynamic fluctuation theory. Phys. Rev., 83: 1231-1235 (1951).
    [10] H. B. Callen, R. F. Greene, On a theorem of irreversible thermodynamics., Phys. Rev. 86,702-710 (1952).
    [11] I. W. Martin et al., “Comparison of the temperature dependence of the mechanical dissipation in thin films of Ta2O5 and Ta2O5 doped with TiO2”, Class. Quantum Grav. 26, 155012 (2009).
    [12] I. W. Martin et al., Low temperature mechanical dissipation of an ion-beam sputtered silica film, Class. Quantum Grav., 31, 035019 (2014).
    [13] Z. L. Huang, The optical properties of PECVD silicon nitride films after thermal annealing, and the optical and mechanical properties of NH3-free PECVD silicon nitride films, Master thesis, National Tsing Hua University (2019)
    [14] O. L. Anderson, H. E. Bommel, Ultrasonic absorption in fused silica at low temperatures and high frequencies, Journal of the American Ceramic Society 38, 125–131 (1955).
    [15] R. E. Strakna, Investigation of low temperature ultrasonic absorption in fast-neutron irradiated SiO2 glass, Physical Review 123, 2020–2026 (1961).
    [16] W. A. Phillips, “Two-level states in glasses”, Rep. Prog. Phys. 50, 1657-1708 (1987).
    [17] R. Hamdan, J. P. Trinastic, and H. P. Cheng, “Molecular dynamics study of the mechanical loss in amorphous pure and doped silica”, J. Chem. Phys. 141, 054501 (2014).
    [18] W. J. Tsai, Study of the optical and mechanical properties of silicon oxynitride thin films fabricated by plasma enhanced chemical vapor deposition, Master thesis, National Tsing Hua University (2019).
    [19] A. Stoffel, A. Kovács, W. Kronast, and B. Muller, “A LPCVD against PECVD for micromechanical applications”, J. Micromech. Microeng. 6, 1 (1996).
    [20] D. Resnik, U. Aljančič, D. Vrtačnik, M. Možek, and S. Amon, “Mechanical stress in thin film microstructures on silicon substrate,” Vacuum. 80, 236–240 (2005).
    [21] Y. C. Yang, Study of the material properties of silicon nitride thin films fabricated by low pressure chemical vapor deposition and subjected to thermal annealing for mirror coatings of the laser interferometer gravitational waves detector, Master thesis, National Tsing Hua University (2022).
    [22] Van Nguyen, Son. "Effect of si—h and n—h bonds on electrical properties of plasma deposited silicon nitride and oxynitride films." Journal of electronic materials 16.4 (1987): 275-281.
    [23] Y. H. Kao, Study the reduction of optical absorption of the oxynitride thin film fabricated by plasma enhanced chemical vapor deposition, Master thesis, National Tsing Hua University (2021).
    [24] G. E. Jellison Jr. and F. A. Modine, Parameterization of the optical functions of amorphous materials in the interband region, Appl. Phys. Lett. 69, 371 (1996).
    [25] F. C. Kuei, Study of silicon nitride and silicon oxynitride films fabricated by the plasma enhanced chemical vapor deposition method to derive empirical equation of optical absorption, Master thesis, National Tsing Hua University (2021).
    [26] H. Shanks, C. J. Fang, L. Ley, M. Cardona, F. J. Demond, and S. Kalbitzer, “Infrared spectrum and structure of hydrogenated amorphous silicon”, Phys. Status Solidi 100, 43 (1980).
    [27] C. J. Fang, K. J. Gruntz, L. Ley, M. Cardona, F. J. Demond, G. Muller, and S. Kalbitzer, “The hydrogen content of a-Ge:H and a-Si:H as determined by IR spectroscopy, gas evolution and nuclear reaction techniques”, J. Non-Cryst. Solids 35-36, 255 (1980)
    [28] A. Morimoto, Y. Tsujimura, M. Kumeda, and T. Shimizu, “Properties of hydrogenated amorphous Si-N prepared by various methods”, Jpn. J. Appl. Phys. 24, 1394 (1985).
    [29] H. C. Chen, Annealing effect on the room temperature mechanical loss of the silicon nitride films deposited with PECVD on silicon cantilever, Master thesis, National Tsing Hua University (2017)
    [30] L. A. Chang, Annealing effect on the optical and mechanical properties of nitrogen-rich silicon nitride film fabricated by plasma enhance chemical vapor deposition, Master thesis, National Tsing Hua University (2018)
    [31] N. C. Kang, Photothermal common path interferometry system setup and study of the optical absorption of the silicon nitride film deposited by PECVD method, Master thesis, National Tsing Hua University (2017).
    [32] D. L. Tsai, Study of the material properties of silicon nitride thin films fabricated by low pressure chemical vapor deposition for mirror coatings of the laser interferometer gravitational waves detector, Master thesis, National Tsing Hua University (2021).
    [33] https://www.corning.com/
    [34] J. Rostaing, Y. Cros, S. Gujrathi, and S. Poulain, “Quantitative infrared characterization of plasma enhanced CVD silicon oxynitride films,” Journal of Non-Crystalline Solids. 97-98, 1051–1054 (1987).
    [35] Z. Yin and F. W. Smith, “Tetrahedron model for the optical dielectric function of hydrogenated amorphous silicon nitride alloys,” Physical Review B. 42, 3658–3665 (1990).
    [36] T. Makino and M. Maeda, “Bonds and Defects in Plasma-Deposited Silicon Nitride Using SiH4-NH3-Ar Mixture,” Japanese Journal of Applied Physics, vol. 25, 1300–1306 (1986).
    [37] V. Verlann, et al., “The effect of composition on the bond structure and refractive index of silicon nitride deposited by HWCVD and PECVD”, Thin Solid Films 517, 3499 (2009).
    [38] A. Sassella, “Tetrahedron model for the optical dielectric function of H-rich silicon oxynitride,” Physical Review B. 48, 14208–14215 (1993).
    [39] A. D. Prado, E. S. Andrés, I. Mártil, G. González-Diaz, D. Bravo, F. J. López, W. Bohne, J. Röhrich, B. Selle, and F. L. Martínez, “Optical and structural properties of SiOxNyHz films deposited by electron cyclotron resonance and their correlation with composition,” Journal of Applied Physics. 93, 8930–8938 (2003).
    [40] S. T. Thornton, J. B. Marion. Classical dynamics of particles and systems. Brooks Cole, 5: 109-121 (2003).
    [41] C. Cheng, Cryogenic mechanical loss measurement system setup and annealing effect on the mechanical loss of the nano-layer coatings, Master thesis, National Tsing Hua University (2015).
    [42] J. S. Oul, Setup of room temperature mechanical loss measurement and preliminary measurement results on fused silica and silicon cantilevers, Master thesis, National Tsing Hua University (2012).
    [43] W. Y. Wang, Study of mechanical vibration and loss of silicon cantilever for development of the high-reflection mirror in the laser interference gravitational wave detector. Master thesis, National Tsing Hua University (2013)
    [44] 李正中, “薄膜光學與鍍膜技術”, 第七版, 藝軒圖書出版社(2012).
    [45] G. Gerald Stoney “The tension of metallic films deposited by electrolysis,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 82, 172–175 (1909).
    [46] C. W. Lee, Study of the material properties and the mechanical loss of the silicon nitride films deposited by PECVD method on silicon cantilever for laser interference gravitational wave detector application , Master thesis, National Tsing Hua University (2013).
    [47] Y. H. Juang, Stress effect on mechanical loss of the SiNx film deposited with PECVD method on silicon cantilever and setup for the loss measurement improvement, Master thesis, National Tsing Hua University (2014).
    [48] French, P. J., et al. "Optimization of a low-stress silicon nitride process for surface-micromachining applications." Sensors and Actuators A: physical 58.2 (1997): 149-157.H. Wu, Cryogenic mechanical loss of SiNxHy and SiN0.40H0.79/SiO2 stacks deposited by plasma enhanced chemical vapor deposition method, Master thesis, National Tsing Hua University (2017).
    [49] H. Wu, Cryogenic mechanical loss of SiNxHy and SiN0.40H0.79/SiO2 stacks deposited by plasma enhanced chemical vapor deposition method, Master thesis, National Tsing Hua University (2017).
    [50] H. W. Pan, Study of silicon nitride and silica films fabricated by a plasma enhanced chemical vapor deposition method for low thermal noise mirror coating of laser interferometer gravitational wave detectors, PhD Thesis, National Tsing Hua University
    [51] O. L. Anderson, H. E. Bommel, Ultrasonic absorption in fused silica at low temperatures and high frequencies, Journal of the American Ceramic Society 38, 125–131 (1955).
    [52] A. N. Trukhin, “Investigation of the photoelectric and photoluminescent properties of crystalline quartz and vitreous silica in the fundamental absorption region. A model for electronic structure and migration of energy in SiO2,” Physica Status Solidi (b). 86, 67–75 (1978).
    [53] s
    [54] M. A. Fazio, et al., Comprehensive study of amorphous metal oxide and Ta2O5-based mixed oxide coatings for gravitational-wave detectors, arXiv:2108.02127 (2021).
    [55] C. Comtet, et al., Reduction of tantala mechanical losses in Ta2O5/SiO2 coatings for the next generation of VIRGO and LIGO interferometric gravitational waves detectors, 42nd Rencontres de Moriond Gravitational Waves and Experimental Gravity. (2007).
    [56] K. Craig, et al., Mirror Coating Solution for the Cryogenic Einstein Telescope, Phys. Rev. Lett. 122, 231102 (2019).
    [57] I. P. Chang, Stress Annealing effect on the optical and mechanical properties of silica like oxynitride thin films fabricated by plasma enhanced chemical vapor deposition method, Master thesis, National Tsing Hua University (2022).
    [58] Zhou, Shun, et al. "Comparative investigation of infrared optical absorption properties of silicon oxide, oxynitride and nitride films." Seventh International Conference on Thin Film Physics and Applications. Vol. 7995. International Society for Optics and Photonics, 2011.
    [59] Y, F.; AYDINLI, A. Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides. Optical materials, 2004, 26.1: 33-46
    [60] Li, Qing, et al. "Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform." Optics express 21.15 (2013): 18236-18248.
    [61] Fu, J. H., and J. R. Schlup. "Mid‐and near‐infrared spectroscopic investigations of reactions between phenyl glycidyl ether (PGE) and aromatic amines." Journal of applied polymer science 49.2 (1993): 219-227
    [62] Whetsel, K. B., W. E. Roberson, and M. W. Krell. "Near-infrared spectra of primary aromatic amines." Analytical Chemistry 30.10 (1958): 1598-1604
    [63] María González González, Juan Carlos Cabanelas and Juan Baselga . Applications of FTIR on Epoxy Resins - Identification, Monitoring the Curing Process, Phase Separation and Water Uptake,April 25th 2012,269
    [64] Ay, F., and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides”, Optical materials 26.1: 33-46. (2004)
    [65] K. Jacobi *, K. Bedurftig, Y. Wang, G. Ertl , From monomers to ice ± new vibrational characteristics of H2O adsorbed on Pt(1 1 1), Surface Science 472 (2001) 9±20
    [66] J. H. ANDERSON, JR. and K. A. WICKERSHEIM*, NEAR INFRARED CHARACTERIZATION OF WATER AND HYDROXYL GROUPS ON SILICA SURFACES, SURFACE SCIENCE 2 (1964) 252-260;
    [67] C. R. Elliott and G. R. Newns, Near Infrared Absorption Spectra of Silica: OH Overtones, Post Office Research Department, Dollis Hill, London, N.W.2, Received 21 May 1970; revision received 28 October 1970)
    [68] H. A. Benesi and A. C. Jones, AN INFRARED STUDY OF THE WATER-SILICA GEL SYSTEM, Shell Development Company, Emeryville, California, Received June 19, 1958
    [69] H. Banu Yener, Serife S. Helvacı, Effect of synthesis temperature on the structural properties and photocatalytic activity of TiO2/SiO2 composites synthesized using rice husk ash as a SiO2 source, Separation and Purification Technology 140 (2015) 84–93
    [70] Brett Hallam n, BudiTjahjono,StuartWenham , Effect of PECVD silicon oxynitride film composition on the surface passivation of silicon wafers , B. Hallam et al. / Solar Energy Materials & Solar Cells 96 (2012) 173–179
    [71] J.C. ROSTAING, Y. CROS, S.C. GUJRATHI*, S. POULAIN**, QUANTITATIVE INFRARED CHARACTERIZATION OF PLASMA ENHANCED CVD SILICON OXYN1TRIDE FILMS, Journal of Non-Crystalline Solids 97&98 (1987) 1051-1054
    [72] F. Ay, A. Aydinli , Comparative investigation of hydrogen bonding in silicon basedPECVD grown dielectrics for optical waveguides, F. Ay, A. Aydinli / Optical Materials 26 (2004) 33–46
    [73] T. HIRATA , EVOLUTION OF THE INFRA-RED VIBRATIONAL MODES UPON THERMAL OXIDATION OF Si SINGLE CRYSTALS, National Research Institute for Metals, l-2-1, Sengen, Tsukuba, Ibaraki, 305, Japan
    [74] Yining Huang,* Zhimei Jiang,§ and Wilhelm Schwieger, Vibrational Spectroscopic Studies of Layered Silicates, Vibrational Spectroscopic Studies of Silicates, Chem. Mater., Vol. 11, No. 5, 1999 1211
    [75] T. L. Lo, Evaluation of silicon nitride (SiNx)/silicon oxynitride (SiOxNy) stacks for mirror coating of laser interferometer gravitational wave detectors, Master thesis, National Tsing Hua University (2021).

    QR CODE