簡易檢索 / 詳目顯示

研究生: 林立翔
Lin, Li-Siang
論文名稱: 添加鋁異質耐火高熵合金 微結構與機械性質之研究
Microstructure and Mechanical Properties of Aluminum-Added Heterogeneous Refractory High-Entropy Alloys
指導教授: 張守一
Chang, Shou-Yi
口試委員: 蔡銘洪
Tsai, Ming-Hung
吳欣潔
Wu, Hsin-Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 127
中文關鍵詞: 高熵合金耐火高熵合金異質高熵合金微結構機械性質添加鋁異質耐火高熵合金
外文關鍵詞: High Entropy Alloy, Refractory High-Entropy Alloys, Heterogeneous High-Entropy Alloys, Microstructure, Mechanical Properties, Aluminum-Added Heterogeneous Refractory High-Entropy Alloys
相關次數: 點閱:46下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高熵合金將多種主元素以相近的比例混和而成之合金,由於組成元素種類繁多,藉由高熵效應、擴散遲緩、晶格扭曲與雞尾酒等四大效應,使得高熵合金有許多優異的機械性能,例如高強度、高破壞韌性、高磨耗組抗和極佳耐蝕能力等優異特性。其中,BCC結構的耐火高熵合金在高溫下能夠維持相穩定性,同時擁有良好的抗軟化能力。然而目前耐火高熵合金具有室溫下低延展性和高密度的缺點。本實驗設計了改進的成分Hf0.5Mo0.5NbTa0.5TiVZr,將密度較高的元素減半,同時再添加鋁元素,期望可以進一步降低密度的同時再利用鋁與其他耐火元素間較強的鍵結來進一步提高強度。基本性質分析包含XRD晶體結構鑑定、EBSD相鑑定、EDS成分分析,機械性質部分則包含維式硬度測試、奈米壓痕測試、室溫和高溫巨觀壓縮測試和變形後差排結構觀察等。實驗結果顯示,隨著Al含量的提高,有越來越多的C14 Laves第二相在樹枝間晶區域形成,使材料降伏強度有所提升但會犧牲部分延性,因為差排滑移時會受到第二相的阻礙而提升強度,並發現塑性變型時差排從相界大量生成,可以提升前期的加工硬化率,但到後期相界反而堆積過多差排導致應力集中產生破裂。同時第二相的存在也能在降低密度的同時維持整體耐火高熵合金的耐溫性能,且高Al含量的試片在高溫下也能展現延展性。


    High-entropy alloys are alloys composed of multiple primary elements mixed in similar proportions. Due to the wide variety of constituent elements, high-entropy alloys exhibit excellent mechanical properties such as high strength, high fracture toughness, high wear resistance, and excellent corrosion resistance. Among them, refractory high-entropy alloys with a body-centered cubic (BCC) structure can maintain phase stability at high temperatures and possess good resistance to softening. However, current refractory high-entropy alloys have the disadvantages of low ductility at room temperature and high density. In this study, an improved composition Hf0.5Mo0.5NbTa0.5TiVZr was designed. The density of high-density elements was reduced by half, and aluminum was added to further reduce the density and utilize the strong bonding between aluminum and other refractory elements to enhance the strength. Basic property analysis includes XRD crystal structure identification, EBSD phase identification, and EDS composition analysis. The mechanical properties include Vickers hardness testing, nanoindentation testing, room temperature and high-temperature macro-compression testing, and observation of dislocation structures after deformation. The experimental results show that the increase in aluminum content, more C14 Laves phase precipitates are formed within the interdendritic regions of the material. This leads to an improvement in yield strength but sacrifices some ductility. The presence of precipitates impedes dislocation slip, thereby increasing the strength. It was observed that a large number of dislocations were generated from phase boundaries during plastic deformation, which can enhance the early-stage work hardening. However, excessive accumulation of dislocations at phase boundaries leads to stress concentration and fracture in later stages. Additionally, the presence of precipitates helps to maintain the high-temperature performance of the overall refractory high-entropy alloy while reducing the density. The sample with a high Al content could also show ductility at elevated temperature.

    壹、前言 1 貳、文獻回顧 2 2-1 高熵合金 2 2-1-1 高熵合金發展 2 2-1-2 四大核心效應 5 2-1-3 不同溫度下高熵合金之特殊性質表現 8 2-2 高熵合金之機械行為 12 2-2-1 部分差排與疊差 12 2-2-2 變形雙晶 14 2-2-3 相變誘發塑性 16 2-2-4 交叉滑移 18 2-2-5 高熵合金特殊機械行為 20 2-3 異質結構高熵合金 29 2-3-1 異質高熵合金 29 2-3-2 單相異質結構 31 2-3-3 間隙型異質結構 33 2-3-4 雙相析出異質結構 35 2-3-5 雙相共晶異質結構 37 2-3-6 多相異質結構 39 2-4 異質耐火高熵合金 41 2-4-1 耐火高熵合金 41 2-4-2 耐火高熵合金高溫特性 42 2-4-3 異質耐火高熵合金 44 2-4-4 鋁添加對耐火高熵合金的影響 46 2-4-5 含鋁異質雙相耐火高熵合金 48 2-4-6 成分選擇法則 53 2-5 異質結構高熵合金強化機制 55 2-5-1 Geometrically necessary dislocations (GND) 55 2-5-2 背相應力和正向應力 57 2-5-3 Orowan 差排繞過機制和差排剪切機制 58 2-6 研究目的 59 參、實驗步驟 61 3-1 實驗規劃 61 3-2 實驗流程 62 3-2-1 高熵合金試片製備 62 3-2-2 高熵合金試片基本性質 64 3-2-3 XRD 晶體結構分析 66 3-2-4 EDS 組成成分分析 66 3-2-5 EBSD 晶粒方向鑑定 66 3-2-6 硬度測試 66 3-2-7 XPM機械性質量測 68 3-2-8 巨觀壓縮測試 68 3-2-9 聚焦離子束 (FIB) TEM試片製備 70 3-2-10 TEM試片觀察 71 肆、結果與討論 73 4-1 理論/實驗密度 73 4-2 XRD晶體結構鑑定 74 4-3 EBSD相鑑定 77 4-4 SEM微結構及EDS組成成分分析 81 4-5 維氏硬度分析 93 4-6 奈米壓痕測試分析 95 4-7 室/高溫巨觀壓縮測試 98 4-8 巨觀壓縮測試斷裂面 108 4-9 壓縮變形後差排行為觀察 112 伍、結論 116 陸、參考文獻 118

    [1] Yeh, J‐W., et al. "Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes." Advanced engineering materials 6.5 (2004): 299-303.
    [2] Miracle, Daniel B., and Oleg N. Senkov. "A critical review of high entropy alloys and related concepts." Acta Materialia 122 (2017): 448-511.
    [3] George, Easo P., Dierk Raabe, and Robert O. Ritchie. "High-entropy alloys." Nature reviews materials 4.8 (2019): 515-534.
    [4] Lim, X. Z. "Metal mixology." Nature 533.7603 (2016): 306-307.
    [5] Sheng, G. U. O., and Chain Tsuan Liu. "Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase." Progress in Natural Science: Materials International 21.6 (2011): 433-446.
    [6] Zhang, Yong, et al. "Solid‐solution phase formation rules for multi‐component alloys." Advanced engineering materials 10.6 (2008): 534-538.
    [7] Ye, Y. F., et al. "High-entropy alloy: challenges and prospects." Materials Today 19.6 (2016): 349-362.
    [8] Li, Weidong, et al. "Mechanical behavior of high-entropy alloys." Progress in Materials Science 118 (2021): 100777.
    [9] Li, Zezhou, et al. "Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys." Progress in Materials Science 102 (2019): 296-345.
    [10] Liu, Fangfei, Peter K. Liaw, and Yong Zhang. "Recent progress with BCC-structured high-entropy alloys." Metals 12.3 (2022): 501.
    [11] Wang, Zhipeng, et al. "Effect of lattice distortion on solid solution strengthening of BCC high-entropy alloys." Journal of Materials Science & Technology 34.2 (2018): 349-354.
    [12] Zhang, Yong, et al. "Microstructures and properties of high-entropy alloys." Progress in materials science 61 (2014): 1-93.
    [13] Cao, B. X., et al. "Cocktail effects in understanding the stability and properties of face-centered-cubic high-entropy alloys at ambient and cryogenic temperatures." Scripta Materialia 187 (2020): 250-255.
    [14] Gludovatz, Bernd, et al. "A fracture-resistant high-entropy alloy for cryogenic applications." Science 345.6201 (2014): 1153-1158.
    [15] Otto, Frederik, et al. "The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy." Acta Materialia 61.15 (2013): 5743-5755.
    [16] Senkov, Oleg N., et al. "Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys." Intermetallics 19.5 (2011): 698-706.
    [17] Senkov, Oleg N., et al. "Development and exploration of refractory high entropy alloys—A review." Journal of materials research 33.19 (2018): 3092-3128.
    [18] Zou, Yu, et al. "Nanocrystalline high-entropy alloys: a new paradigm in high-temperature strength and stability." Nano letters 17.3 (2017): 1569-1574.
    [19] Zhang, ZiJiao, et al. "Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi." Nature communications 6.1 (2015): 10143.
    [20] Joo, S-H., et al. "Tensile deformation behavior and deformation twinning of an equimolar CoCrFeMnNi high-entropy alloy." Materials Science and Engineering: A 689 (2017): 122-133.
    [21] Ding, Qingqing, et al. "Real-time nanoscale observation of deformation mechanisms in CrCoNi-based medium-to high-entropy alloys at cryogenic temperatures." Materials Today 25 (2019): 21-27.
    [22] Wang, Shubin, et al. "Mechanical instability and tensile properties of TiZrHfNbTa high entropy alloy at cryogenic temperatures." Acta Materialia 201 (2020): 517-527.
    [23] Huang, Dong, and Yanxin Zhuang. "Break the strength-ductility trade-off in a transformation-induced plasticity high-entropy alloy reinforced with precipitation strengthening." Journal of Materials Science & Technology 108 (2022): 125-132.
    [24] Huang, Hailong, et al. "Phase‐transformation ductilization of brittle high‐entropy alloys via metastability engineering." Advanced Materials 29.30 (2017): 1701678.
    [25] Li, Zhiming, et al. "Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off." Nature 534.7606 (2016): 227-230.
    [26] Bu, Yeqiang, et al. "Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys." Materials Today 46 (2021): 28-34.
    [27] Li, Qing-Jie, Howard Sheng, and Evan Ma. "Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways." Nature communications 10.1 (2019): 3563.
    [28] Chen, Bing, et al. "Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys." Proceedings of the National Academy of Sciences 117.28 (2020): 16199-16206.
    [29] Wang, Fulin, et al. "Multiplicity of dislocation pathways in a refractory multiprincipal element alloy." Science 370.6512 (2020): 95-101.
    [30] Maresca, Francesco, and William A. Curtin. "Theory of screw dislocation strengthening in random BCC alloys from dilute to “High-Entropy” alloys." Acta Materialia 182 (2020): 144-162.
    [31] Maresca, Francesco, and William A. Curtin. "Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900K." Acta Materialia 182 (2020): 235-249.
    [32] Lee, Chanho, et al. "Strength can be controlled by edge dislocations in refractory high-entropy alloys." Nature communications 12.1 (2021): 5474.
    [33] Eleti, Rajeshwar R., et al. "Unique high-temperature deformation dominated by grain boundary sliding in heterogeneous necklace structure formed by dynamic recrystallization in HfNbTaTiZr BCC refractory high entropy alloy." Acta Materialia 183 (2020): 64-77.
    [34] Zhou, Xinran, Sicong He, and Jaime Marian. "Cross-kinks control screw dislocation strength in equiatomic bcc refractory alloys." Acta Materialia 211 (2021): 116875.
    [35] Xu, Shuozhi, et al. "Local slip resistances in equal-molar MoNbTi multi-principal element alloy." Acta Materialia 202 (2021): 68-79.
    [36] Sathiyamoorthi, Praveen, and Hyoung Seop Kim. "High-entropy alloys with heterogeneous microstructure: processing and mechanical properties." Progress in Materials Science 123 (2022): 100709.
    [37] Ma, Evan, and Xiaolei Wu. "Tailoring heterogeneities in high-entropy alloys to promote strength–ductility synergy." Nature communications 10.1 (2019): 5623.
    [38] Li, Weidong, et al. "Mechanical behavior of high-entropy alloys." Progress in Materials Science 118 (2021): 100777.
    [39] Ma, Evan, and Ting Zhu. "Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals." Materials Today 20.6 (2017): 323-331.
    [40] Wu, S. W., et al. "Enhancement of strength-ductility trade-off in a high-entropy alloy through a heterogeneous structure." Acta Materialia 165 (2019): 444-458.
    [41] Yang, Muxin, et al. "Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength." Proceedings of the National Academy of sciences 115.28 (2018): 7224-7229.
    [42] Sathiyamoorthi, Praveen, et al. "Superior cryogenic tensile properties of ultrafine-grained CoCrNi medium-entropy alloy produced by high-pressure torsion and annealing." Scripta Materialia 163 (2019): 152-156.
    [43] Lu, K. "Making strong nanomaterials ductile with gradients." Science 345.6203 (2014): 1455-1456.
    [44] Pan, Qingsong, et al. "Gradient cell–structured high-entropy alloy with exceptional strength and ductility." Science 374.6570 (2021): 984-989.
    [45] Guo, Wenqi, et al. "Dislocation-induced breakthrough of strength and ductility trade-off in a non-equiatomic high-entropy alloy." Acta Materialia 185 (2020): 45-54.
    [46] Ma, Evan, and Ting Zhu. "Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals." Materials Today 20.6 (2017): 323-331.
    [47] Cao, B. X., et al. "Heterogenous columnar-grained high-entropy alloys produce exceptional resistance to intermediate-temperature intergranular embrittlement." Scripta Materialia 194 (2021): 113622.
    [48] Lei, Zhifeng, et al. "Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes." Nature 563.7732 (2018): 546-550.
    [49] Liu, Chang, et al. "Massive interstitial solid solution alloys achieve near-theoretical strength." Nature communications 13.1 (2022): 1102.
    [50] Li, Zhiming. "Interstitial equiatomic CoCrFeMnNi high-entropy alloys: carbon content, microstructure, and compositional homogeneity effects on deformation behavior." Acta Materialia 164 (2019): 400-412.
    [51] Han, Yu, et al. "Mechanism of dislocation evolution during plastic deformation of nitrogen-doped CoCrFeMnNi high-entropy alloy." Materials Science and Engineering: A 814 (2021): 141235.
    [52] Liang, Yao-Jian, et al. "High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys." Nature communications 9.1 (2018): 4063.
    [53] Yang, T., et al. "Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys." Science 362.6417 (2018): 933-937.
    [54] He, J. Y., et al. "A precipitation-hardened high-entropy alloy with outstanding tensile properties." Acta Materialia 102 (2016): 187-196.
    [55] Yan, Xuehui, Peter K. Liaw, and Yong Zhang. "Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates." Journal of Materials Science & Technology 110 (2022): 109-116.
    [56] Wang, Linjing, et al. "Precipitation and micromechanical behavior of the coherent ordered nanoprecipitation strengthened Al-Cr-Fe-Ni-V high entropy alloy." Acta Materialia 216 (2021): 117121.
    [57] Nutor, Raymond Kwesi, et al. "A dual-phase alloy with ultrahigh strength-ductility synergy over a wide temperature range." Science advances 7.34 (2021): eabi4404.
    [58] Fu, Zhiqiang, et al. "A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength." Science advances 4.10 (2018): eaat8712.
    [59] Yang, T., et al. "Control of nanoscale precipitation and elimination of intermediate-temperature embrittlement in multicomponent high-entropy alloys." Acta Materialia 189 (2020): 47-59.
    [60] Cao, B. X., et al. "Intermediate temperature embrittlement in a precipitation-hardened high-entropy alloy: the role of heterogeneous strain distribution and environmentally assisted intergranular damage." Materials Today Physics 24 (2022): 100653.
    [61] Ma, Y., et al. "Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2 (Ni, Co, Fe, Cr) 14 compositions." Acta Materialia 147 (2018): 213-225.
    [62] Yang, Ying, et al. "Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy." Nature 595.7866 (2021): 245-249.
    [63] Zhao, Y. L., et al. "Anomalous precipitate-size-dependent ductility in multicomponent high-entropy alloys with dense nanoscale precipitates." Acta Materialia 223 (2022): 117480.
    [64] Khan, Muhammad Abubaker, et al. "A superb mechanical behavior of newly developed lightweight and ductile Al0.5Ti2Nb1Zr1Wx refractory high entropy alloy via nano-precipitates and dislocations induced-deformation." Materials & Design 222 (2022): 111034.
    [65] Yuan, Jiale, et al. "Contribution of coherent precipitates on mechanical properties of CoCrFeNiTi0.2 high-entropy alloy at room and cryogenic temperatures." Intermetallics 154 (2023): 107820.
    [66] Qin, Shuang, et al. "Designing structures with combined gradients of grain size and precipitation in high entropy alloys for simultaneous improvement of strength and ductility." Acta Materialia 230 (2022): 117847.
    [67] Kwon, Hyeonseok, et al. "High-density nanoprecipitates and phase reversion via maraging enable ultrastrong yet strain-hardenable medium-entropy alloy." Acta Materialia 248 (2023): 118810.
    [68] Chung, Hyun, et al. "Doubled strength and ductility via maraging effect and dynamic precipitate transformation in ultrastrong medium-entropy alloy." Nature Communications 14.1 (2023): 145.
    [69] Shi, Peijian, et al. "Enhanced strength–ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae." Nature communications 10.1 (2019): 489.
    [70] Shi, Peijian, et al. "Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys." Science 373.6557 (2021): 912-918.
    [71] Shi, Peijian, et al. "Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys." Materials Today 41 (2020): 62-71.
    [72] Wang, Mingliang, et al. "Lightweight, ultrastrong and high thermal-stable eutectic high-entropy alloys for elevated-temperature applications." Acta Materialia 248 (2023): 118806.
    [73] Muskeri, Saideep, et al. "Small-scale mechanical behavior of a eutectic high entropy alloy." Scientific reports 10.1 (2020): 2669.
    [74] Choudhuri, Deep, et al. "Enhancing strength and strain hardenability via deformation twinning in fcc-based high entropy alloys reinforced with intermetallic compounds." Acta Materialia 165 (2019): 420-430.
    [75] Lu, Wenjun, et al. "Advancing strength and counteracting embrittlement by displacive transformation in heterogeneous high-entropy alloys containing sigma phase." Acta Materialia (2023): 118717.
    [76] Sathiyamoorthi, Praveen, et al. "Achieving high strength and high ductility in Al0.3CoCrNi medium-entropy alloy through multi-phase hierarchical microstructure." Materialia 8 (2019): 100442.
    [77] He, Junyang, et al. "On the formation of hierarchical microstructure in a Mo-doped NiCoCr medium-entropy alloy with enhanced strength-ductility synergy." Scripta Materialia 175 (2020): 1-6.
    [78] Yang, M. X., et al. "Strain hardening in Fe–16Mn–10Al–0.86 C–5Ni high specific strength steel." Acta Materialia 109 (2016): 213-222.
    [79] Zhang, Chengcheng, et al. "Cracking mechanism and mechanical properties of selective laser melted CoCrFeMnNi high entropy alloy using different scanning strategies." Materials Science and Engineering: A 789 (2020): 139672.
    [80] Wu, Xiaolei, and Yuntian Zhu. "Heterogeneous materials: a new class of materials with unprecedented mechanical properties." Materials Research Letters 5.8 (2017): 527-532.
    [81] Zhu, Yuntian, and Xiaolei Wu. "Perspective on hetero-deformation induced (HDI) hardening and back stress." Materials Research Letters 7.10 (2019): 393-398.
    [82] Wu, Xiaolei, et al. "Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility." Proceedings of the National Academy of Sciences 112.47 (2015): 14501-14505.
    [83] He, M. Y., et al. "C and N doping in high-entropy alloys: A pathway to achieve desired strength-ductility synergy." Applied Materials Today 25 (2021): 101162.
    [84] Liu, Liyuan, et al. "Nanoprecipitate‐strengthened high‐entropy alloys." Advanced Science 8.23 (2021): 2100870.
    [85] Nagase, Takeshi, et al. "Design and development of (Ti, Zr, Hf)-Al based medium entropy alloys and high entropy alloys." Materials Chemistry and Physics 276 (2022): 125409.
    [86] Senkov, O. N., et al. "Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy." Journal of Materials Science 47 (2012): 4062-4074.
    [87] Feng, Rui, et al. "Superior High‐Temperature Strength in a Supersaturated Refractory High‐Entropy Alloy." Advanced Materials 33.48 (2021): 2102401.
    [88] An, Zibing, et al. "A novel HfNbTaTiV high-entropy alloy of superior mechanical properties designed on the principle of maximum lattice distortion." Journal of Materials Science & Technology 79 (2021): 109-117.
    [89] Lai, Weiji, et al. "Design of BCC refractory multi-principal element alloys with superior mechanical properties." Materials Research Letters 10.3 (2022): 133-140.
    [90] Zhao, Bojun, et al. "A refractory multi-principal element alloy with superior elevated-temperature strength." Journal of Alloys and Compounds 896 (2022): 163129.
    [91] Soni, V., et al. "Microstructural design for improving ductility of an initially brittle refractory high entropy alloy." Scientific reports 8.1 (2018): 8816.
    [92] Yao, J. Q., et al. "Phase stability of a ductile single-phase BCC Hf0. 5Nb0.5Ta0. 5Ti1. 5Zr refractory high-entropy alloy." Intermetallics 98 (2018): 79-88.
    [93] Xu, Z. Q., et al. "Design of novel low-density refractory high entropy alloys for high-temperature applications." Materials Science and Engineering: A 755 (2019): 318-322.
    [94] Tukac, O. Umut, Ali Ozalp, and Eda Aydogan. "Development and thermal stability of Cr10Mo25Ta25Ti15V25 refractory high entropy alloys." Journal of Alloys and Compounds 930 (2023): 167386.
    [95] Khan, Muhammad Abubaker, et al. "A superb mechanical behavior of newly developed lightweight and ductile Al0.5Ti2Nb1Zr1Wx refractory high entropy alloy via nano-precipitates and dislocations induced-deformation." Materials & Design 222 (2022): 111034.
    [96] Pang, Jingyu, et al. "A ductile Nb40Ti25Al15V10Ta5Hf3W2 refractory high entropy alloy with high specific strength for high-temperature applications." Materials Science and Engineering: A 831 (2022): 142290.
    [97] Cui, Dingcong, et al. "Oxygen-assisted spinodal structure achieves 1.5 GPa yield strength in a ductile refractory high-entropy alloy." Journal of Materials Science & Technology 157 (2023): 11-20.
    [98] Li, Tianxin, et al. "A novel ZrNbMoTaW refractory high-entropy alloy with in-situ forming heterogeneous structure." Materials Science and Engineering: A 827 (2021): 142061.
    [99] Wang, Bingjie, et al. "Enhanced high-temperature strength of HfNbTaTiZrV refractory high-entropy alloy via Al2O3 reinforcement." Journal of Materials Science & Technology 123 (2022): 191-200.
    [100] An, Zibing, et al. "Spinodal-modulated solid solution delivers a strong and ductile refractory high-entropy alloy." Materials Horizons 8.3 (2021): 948-955.
    [101] Lin, Chun-Ming, et al. "Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys." Journal of Alloys and Compounds 624 (2015): 100-107.
    [102] Wang, Wen, et al. "Effect of Al addition on structural evolution and mechanical properties of the AlxHfNbTiZr high-entropy alloys." Materials Today Communications 16 (2018): 242-249.
    [103] Wu, Yidong, et al. "Phase stability and mechanical properties of AlHfNbTiZr high-entropy alloys." Materials Science and Engineering: A 724 (2018): 249-259.
    [104] Ge, Shaofan, et al. "Effects of Al addition on the microstructures and properties of MoNbTaTiV refractory high entropy alloy." Materials Science and Engineering: A 784 (2020): 139275.
    [105] Zhao, Bojun, et al. "A refractory multi-principal element alloy with superior elevated-temperature strength." Journal of Alloys and Compounds 896 (2022): 163129.
    [106] Wang, Qing, et al. "Coherent precipitation and stability of cuboidal nanoparticles in body-centered-cubic Al0. 4Nb0. 5Ta0. 5TiZr0. 8 refractory high entropy alloy." Scripta Materialia 190 (2021): 40-45.
    [107] Soni, V., et al. "Microstructural design for improving ductility of an initially brittle refractory high entropy alloy." Scientific reports 8.1 (2018): 8816.
    [108] Soni, Vishal, et al. "Phase inversion in a two-phase, BCC+ B2, refractory high entropy alloy." Acta Materialia 185 (2020): 89-97.
    [109] Gao, Kuan, et al. "Phase inversion in a lightweight high Al content refractory high-entropy alloy." Journal of Materials Science & Technology 150 (2023): 124-137.
    [110] Akca, Enes, and Ali Gürsel. "A review on superalloys and IN718 nickel-based INCONEL superalloy." Periodicals of engineering and natural sciences 3.1 (2015).
    [111] Stepanov, N. D., et al. "Effect of Al on structure and mechanical properties of AlxNbTiVZr (x= 0, 0.5, 1, 1.5) high entropy alloys." Materials Science and Technology 31.10 (2015): 1184-1193.
    [112] Yurchenko, N., et al. "Overcoming the strength-ductility trade-off in refractory medium-entropy alloys via controlled B2 ordering." Materials Research Letters 10.12 (2022): 813-823.
    [113] Zarei, Zahra, et al. "Effect of heat treatment regime on microstructure and phase evolution of AlMo0. 5NbTa0. 5TiZr refractory high entropy alloy." Journal of Alloys and Compounds 949 (2023): 169818.
    [114] Yurchenko, N. Yu, et al. "Effect of Al content on structure and mechanical properties of the AlxCrNbTiVZr (x= 0; 0.25; 0.5; 1) high-entropy alloys." Materials Characterization 121 (2016): 125-134.
    [115] Jin, Dongming, et al. "High-strength and energetic Al2Ti6Zr2Nb3Ta3 high entropy alloy containing a cuboidal BCC/B2 coherent microstructure." Journal of Alloys and Compounds 931 (2023): 167546.
    [116] Huang, Rui, et al. "A novel AlMoNbHfTi refractory high-entropy alloy with superior ductility." Journal of Alloys and Compounds (2023): 168821.
    [117] Soni, Vishal, et al. "Phase stability as a function of temperature in a refractory high-entropy alloy." Journal of Materials Research 33.19 (2018): 3235-3246.
    [118] Jensen, J. K., et al. "Characterization of the microstructure of the compositionally complex alloy Al1Mo0. 5Nb1Ta0. 5Ti1Zr1." Scripta Materialia 121 (2016): 1-4.
    [119] Zhou, Jia-li, et al. "Research status of tribological properties optimization of high-entropy alloys: A review." Journal of Materials Science 58.10 (2023): 4257-4291.
    [120] Senkov, O. N., et al. "Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0. 5NbTa0. 5TiZr." Materials & Design 139 (2018): 498-511.
    [121] Senkov, O. N., C. Woodward, and D. B. Miracle. "Microstructure and properties of aluminum-containing refractory high-entropy alloys." Jom 66 (2014): 2030-2042.
    [122] Ågren, John. "Calculation of phase diagrams: Calphad." Current opinion in solid state and materials science 1.3 (1996): 355-360.
    [123] Senkov, O. N., D. B. Miracle, and S. I. Rao. "Correlations to improve room temperature ductility of refractory complex concentrated alloys." Materials Science and Engineering: A 820 (2021): 141512.
    [124] Tseng, Ko-Kai, et al. "Effects of Mo, Nb, Ta, Ti, and Zr on mechanical properties of equiatomic Hf-Mo-Nb-Ta-Ti-Zr alloys." Entropy 21.1 (2018): 15.
    [125] Stepanov, N. D., et al. "Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy." Materials Letters 142 (2015): 153-155.

    QR CODE