研究生: |
陳姵圻 Chen, Pei-Chi |
---|---|
論文名稱: |
應用感應耦合蝕刻X光單晶藍寶石共振腔體和雷射鑽孔氮化鋁鎵/氮化鎵場效電晶體生物感測器封裝之微加工技術 Novel micromaching using inductively coupled plasma (ICP) etching for x-ray resonant cavities of sapphire and Laser drilling for AlGaN/GaN field-effect transistor biosensor package |
指導教授: |
傅建中
Fu, Chien-Chung |
口試委員: |
王玉麟
Wang, Yu-Ling 陳致真 Chen, Chih-Chen 陳秀香 Chen, Hsiu-Hsiang 黃萌祺 Huang, Meng-Chi |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | X光共振腔 、感應耦合電漿蝕刻 、雷射鑽孔 、氮化鋁鎵/氮化鎵場效電晶體生物感測器 、封裝 |
外文關鍵詞: | X-ray resonator cavity, Inductively Coupled Plasma etching, Laser drilling, AlGaN/GaN filed-effect transistor biosensors, package |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微機電與微加工技術是目前工業發展的主流,使用傳統機械加工方式製作高縱橫比結構,具有刀具磨損、加工時間長和不能大量生產等問題。藍寶石是硬脆材料,難以用傳統的機械加工方法加工。
在本研究中,我們使用在感應耦合電漿蝕刻單晶藍寶石製程中,使用電鍍鎳為硬遮罩及Cl2/BCl3/Ar為蝕刻製程氣體。使用Cl2/BCl3/Ar的氣體來蝕刻藍寶石,過程變量包括BCl3流量比和偏壓功率。經過540分鐘蝕刻,得到深度95 μm,晶體寬度30 μm,晶體間隙115 μm,具垂直側壁輪廓內角89.5°的X光藍寶石共振腔,也成功地觀察到藍寶石共振腔之共振腔之共振能譜。
另外,已經開發了一種新穎的封裝技術,使用Nd :YVO4和CO2等雷射對氮化鋁鎵/氮化鎵場效電晶體生物感測器封裝進行雷射鑽孔加工。為了製造PMMA模具、PMMA流道和毛細力流道,我們調查了雷射鑽孔參數對PMMA基材、雙面膠帶和親水膜造成的影響。
使用CO2雷射鑽孔技術對親水膜和雙面帶進行圖案化以產生流道和出口圖案。然後將雙面膠帶和親水性薄膜疊形成毛細力流道。也利用此CO2雷射鑽孔技術對PMMA基板產生圖案化,以產生PMMA模具和PMMA流道。
將微型化的氮化鋁鎵/氮化鎵高電子遷移率電晶體嵌入在環氧樹脂基板中並與金屬電極連接。使用Nd:YVO4雷射鑽孔將環氧樹脂基板製成micro-SD卡形狀和兩個圓孔之鑽孔加工。將環氧樹脂基板並通過光阻防護,在電晶體和閘極極區域上形成開口,接著和PMMA 流道和毛細流道黏合形成微流道。
最後,將C-反應蛋白適體固定在毛細力流道內的氮化鋁鎵/氮化鎵高電子遷移率電晶體上。使用這種一次性生物感測晶片和可持式讀取裝置在標準溶液和人類血清中成功地檢測到CRP。結果證明,這種可持式系統在未來的個人醫療保健中是具有發展潛力的。
Microelectromechanical Systems and micromachining is the mainstream of industrial development. Use of traditional machining to make high aspect ratio structure has disadvantages like tool wear, longer processing time and cannot be mass produced. Sapphire is hard and brittle material and it is very difficult to use the traditional mechanical processing methods to process it.
In this study, we used electroplated Ni as a mask during sapphire inductively coupled plasma (ICP) etching with Cl2/BCl3/Ar gas mixtures. A gas mixture of Cl2/BCl3/Ar was used to etch the sapphire with process variables including BCl3 flow ratio and bias power. An X-ray sapphire resonator cavity with a depth of 95 μm, a crystal width of ~ 30 μm, a crystal gap of ~115 μm, and a vertical sidewall profile of 89.5 ° was obtained by etching for 540 minutes. The resonant spectrum of the x-ray resonant cavity of the sapphire was successfully observed.
In addition, a novel package technology has been developed for miniaturized AlGaN/GaN field-effect transistor biosensors by Nd:YVO4 and CO2 laser drilling. We investigated the effect of laser drilling parameters on the PMMA substrate, double side tape and hydrophilic film, which are required for PMMA mold, PMMA channel and capillary channel.
A hydrophilic film and double side tapes were patterned using CO2 laser drilling to generate a channel and an outlet pattern. The stack of double side tapes and hydrophilic film were then stuck together to form the capillary microchannel. The PMMA substrate was also patterned using CO2 laser drilling to generate a PMMA mold and PMMA channel.
The miniaturized AlGaN/GaN high electron mobility transistors (HEMTs) were embedded in an epoxy substrate and connected with metal electrodes. The epoxy substrates were drilled in the shape of a micro-SD card with two holes by Nd:YVO4 laser. The epoxy substrate was passivated by photoresist to make openings on the transistor and gate electrode regions, followed by bonding a microfluidic channel made of PMMA and capillary channel.
Finally, C-reactive protein (CRP) aptamer was then immobilized on the AlGaN/GaN HEMT inside the capillary channel. CRP was essfully detected in standard buffer solution and human serum using the disposable biosensor chip and the portable readout device. The result shows that this portable system is promising in personal healthcare in the future.
[1] Wulfsberg, J. P. et al. 2003. Sapphire tools for laser-assisted microforming. In " 4th Intl. Symposium on Laser Precision Microfabrication LPM". Proc. of SPIE 5063, 1- 5, Munich, Germany.
[2] Geiger M. et al. 2001. Microforming. CIRP Annals-Manufacturing Technology. 50(2):445-462, 2001.
[3] 顏庭瑜,2008,飛秒雷射於工程材料精密加工之可行性研究,碩士論文,國立臺灣大學機械工程學系。
[4] Chang, S. L. et al. 2005. X-ray resonance in crystal cavities: realization of Fabry-Pérot resonator for hard x-rays. Physical Review Letters. 94(17):174801.
[5] Chang, S. L. et al. 2006. Crystal cavity resonance for hard x rays: A diffraction experiment. Physical Review B. 74(13):134111.
[6] Sutter, J. P. et al. 2001. Multiple-beam x-ray diffraction near exact backscattering in silicon.. Physical Review B. 63(9):094111.
[7] Shvyd’ko, Y. V. 2001. X-ray resonators and other applications of Bragg backscattering. Ph. D Thesis University of Hamburg.
[8] Chen S. Y. et al. 2008. Coherent trapping of x-ray photons in crystal cavities in the picosecond regime. Applied Physics Letters. 93(14):141105.
[9] Chiu, M. S., Y. P. Stetskob and S. L. Chang. 2008. Dynamical calculation for x-ray 24-beam diffraction in a two-plate crystal cavity of silicon. Acta Crystallographica Section A. 64:394-403.
[10] Kohn, V. G., Y. V. Shvyd’ko and E. Gerdau. 2000. On the theory of an x-ray Fabry Pérot interferometer. Physica Status Solidi B. 221(21):579-615.
[11] Shvyd’ko, Y. V. and E. Gerdau. 1999. Backscattering mirrors for x-rays and radiation. Hyperfine Interactions. 123/124(1):741-776.
[12] Chang, C. M. et al. 2013. Surface property study of different patterning sapphire structures by ICP-RIE. Proc. In " IEEE Int. Conf. on Nano/ Micro Engineered and Molecular systems", 372-375, Suzhou, China.
[13] Hsu, Y. P. et al. 2005. ICP etching of sapphire substrates. Optical Materials. 27(6): 1171-1174.
[14] Kim, J. W., Y. C. Kim and W. J. Lee. 1995. Reactive ion etching mechanism of plasma enhanced chemically vapor deposited aluminum oxide film in CF4/O2 plasma, Journal of Applied Physics. 78(3):2045-2049.
[15] Sung, Y. J. et al. 2001. High rate etching of sapphire wafer using Cl2/BCl3/Ar inductively coupled plasmas. Materials Science and Engineering: B. 82(1-3):50-52.
[16] Shaw, J. L. V. 2016. Practical challenges related to point of care testing. Practical Laboratory Medicine. 4:22-29.
[17] Drain, P. K. et al. 2014. Diagnostic point-of-care tests in resource-limited settings. The Lancet Infectious Diseases, 14(3):239-249.
[18] Uys, P. W. et al. 2009. Potential of rapid diagnosis for controlling drug- susceptible and drug-resistant tuberculosis in communities where Mycobacterium tuberculosis infections are highly prevalent. Journal of Clinical Microbiology. 47(5):1484-1490.
[19] Mabey, D. et al. 2004. Diagnostics for the developing world. Nature Reviews Microbiology. 2:231-240.
[20] Hutchings, D. C. et al. 1987. Theory of optical bistability in metal mirrored Fabry-Pérot cavities containing thermo-optic materials. Optics Communications. 61(5):345-350.
[21] X. P. Feng 1991. Theory of a short optical cavity with dielectric multilayer film mirrors. Optics Communications. 83(1-2):162-176.
[22] 陳仕倫,2015,斜向入射之藍寶石X光共振腔之設計,碩士論文,國立清華大學物理學系。
[23] 黃亮瑜,2009,藍寶石X光共振腔之可行性研究,碩士論文,國立清華大學物理學系。
[24] Bond, W. L., M. A. Duguay and M. A. Rentzepis. 1967. Proposed resonator for an x-ray laser. Applied Physics Letters. 10(8):216-218.
[25] Steyerl, A. and K. A. Steinhauser. 1979. Proposal of a Fabry-Pérot-type interferometer for x-rays. Zeitschrift für Physik B Condensed Matter. 34(2):221-217.
[26] Caticha, A ., K. Aliberty and S. Caticha-Ellis. 1996. A Fabry-Pérot interferometer for sub-mev x-ray energy resolution. Review of Scientific Instruments 67(9):3380-3381.
[27] Shvyd’ko, Y. V. et al. 1998. Exact Bragg backscattering of x-rays. Physical Review B. 57(9):4968-4971.
[28] Liss, K. D. et al. 2000. Storage of x-ray photons in a crystal resonator. Nature. 404(6776):371-373.
[29] Shvyd’ko, Y. V. et al. 2002. Sapphire x-ray resonator. In " Hyperfine interactions (C) Int. Conf. on Applications of the Mossbauer Effect (Oxford, UK, 2-7 Proc. September 2001)", ed. M. F. Thomas, J. M. Williams and T. C. Gibb, 25-28. Dordrecht: Springer Publishing Co.
[30] Shvyd’ko Y. V. et al. 2003. X-ray interferometry with micro-electronvolt resolution. Physical Review Letters,. 90(1):013904.
[31] Kikuta. S. 1998. X-ray diffraction with a Bragg angle near π/2 and its applications. Journal of Synchrotron Radiation. 5(3):670-672.
[32] Lucht, M. et al. 2003. Precise measurement of the lattice parameters of α-Al2O3 in the temperature range 4.5-250 K using the Mössbauer wave length standard. Journal of Applied Crystallography. 36:1075-1081.
[33] Ahmad, I. et al. 2001. Search for x-ray induced acceleration of the decay of the 31 year isomer of 178 Hf using synchrotron radiation. Physical Review Letters, 87:072503.
[34] 張櫻議,2005年, X光共振腔的可行性研究,碩士論文,國立清華大學物理所。
[35] 蔡一葦,2014年,多共振腔系統、藍寶石X光共振腔及建置時間解析繞射系
統,博士論文。國立清華大學物理所。
[36] Chen, P. C. et al. 2015. Bulk vertical micromachining of single-crystal sapphire using inductively coupled plasma etching for x-ray resonant cavities. J. Micromech. 25(1): 015016.
[37] Shvyd’ko, Y. V. 2004. X-ray optics: High energy resolution applications. Berlin:Springer.
[38] Tadatomo K . et al. 2001. High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy. Physica Status Solidi (A). 188(6):121-125.
[39] Hsu, Y. P. et al. 2004. Lateral epitaxial patterned sapphire InGaN/GaN MQW LEDs. Journal of Crystal Growth. 261(4):466-470.
[40] Wuu, D. S. et al. 2006. Fabrication of pyramidal patterned sapphire substrates for high-efficiency InGaN-based light emitting diodes. Journal of The Electrochemical Society. 153(8):765-770.
[41] Lee, Y. J. et al. 2007. High brightness GaN-based light-emitting diodes. Journal of Display Technology. 3(2):118-125.
[42] Tsai, P. C., R. W. Chuang and Y. K. Su. 2007. Lifetime tests and junction-temperature measurement of InGaN light-emitting diodes using patterned sapphire substrates. Journal of Lightwave Technology. 25(2):591-596.
[43] Shen, C. F. et al. 2007. Nitride-based high-power flip-chip LED with double-side patterned sapphire substrate. IEEE Photonics Technology Letters. 19(10):780-782.
[44] Su Y. K. et al. 2008. GaN-based light-emitting diodes grown on photonic crystal-
patterned sapphire substrates by nanosphere lithography. Japanese Journal of Applied Physics. 47(8S1):6706-6708.
[45] Gao, H. et al. 2008. Improvement of the performance of GaN-based LEDs grown on sapphire substrates patterned by wet and ICP etching. Solid-State Electron. 52(6):962-967.
[46] Hsieh , Y. T. and Y. C. Lee. 2011. Direct metal contact printing lithography for patterning sub-micrometer surface structures on a sapphire substrate. Journal of Micromechanics and Microengineering. 21(1):015001.
[47] Park, H. et al. 2011. Enhancement of photo- and electro-luminescence of GaN-based LED structure grown on a nanometer-scaled patterned sapphire substrate. Microelectronic Engineering. 88(11):3207-3213.
[48] Shiao, M. H. et al. 2012. The sub- micron hole array in sapphire produced by inductively- coupled plasma reactive ion etching. Journal for Nanoscience and Nanotechnology. 12(2):1641-1644.
[49] Kim, D. W. et al. 2003. High rate sapphire (Al2O3) etching in inductively coupled plasmas using axial external magnetic field. Thin Solid Films. 435(1-2): 242-246.
[50] Lee, J. W. et al. 2000. Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 18(4):1220-1224, 2000.
[51] Agarwal, A. et al. 2009. Effect of simultaneous source and bias pulsing in inductively coupled plasma etching. Journal of Applied Physics. 106(10):103305.
[52] Jeong, C. H. et al. 2002. Sapphire etching with BCl3/HBr/Ar plasma. Surface and Coatings Technology. 171(1-3):280-284.
[53] Jeomg, C. H. et al. 2002. A study of sapphire etching characteristics using BCl3-based inductively coupled plasmas. Japanese Journal of Applied Physics. 41(10):6206-6208.
[54] Kim, D. W. et al. 2003. High rate sapphire etching using BCl3-based inductively coupled plasma. Journal of the Korean Physical Society. 42:795-799.
[55] Jeong, C. H. et al. 2002. Dry etching of sapphire substrate for device separation in chlorine based inductively coupled plasmas,. Materials Science and Engineering: B. 93(1-3):60-63.
[56] Feng, Z. H. et al. 2004. GaN-based blue light-emitting diodes grown and fabricated on patterned sapphire substrates by metalorganic vapor-phase epitaxy. Journal of Crystal Growth. 272(1-4):327-332.
[57] Benchabane, S. et al. 2009. Highly selective electroplated nickel mask for lithiumniobate dry etching. Journal of Applied Physics 105(9):094109.
[58] Zhou, S. and S. Liu. 2009. Study on sapphire removal for thin-film LEDs fabrication using CMP and dry etching. Applied Surface Science. 255(23):9469-9473.
[59] Hwang, G. S. and K. P. Giapis. 1997. Aspect ratio independent etching of dielectrics. Applied Physics Letters. 71(23):458-460.
[60] Schaepkens, M. and G. S. Oehrlein. 1998. Asymmetric microtrenching during inductively coupled plasma oxide etching in the presence of a weak magnetic field. Applied Physics Letters. 72(11):1293-1295.
[61] Kim, D. P, J. W. Yeo and C. I. Kim. 2004. Etching properties of Al2O3 films in inductively coupled plasma. Thin Solid Films. 459(1-2):122-126.
[62] Tsai, Y. W. et al. 2016. Sapphire hard X-ray Fabry–Perot resonators for synchrotron Experiments. Journal of Synchrotron Radiation. 23:658-664.
[63] Chung, C. et al. 2012. Fabrication of sub-spot-size microchannel of microfluidic chip using CO2 laser processing with metalfilm protection. Micro Nano Letters IET. 7:736–739.
[64] Prakash, S. et al. 2016. CO2 laser microchanneling on polymethylmethacrylate (PMMA) at dfferent defocusing. In "Proceedings of 6th International & 27th All India Manufacturing Technology, Design and Research Conference(AIMTDR)" College of Engineering, Pune, Maharashtra, INDIA.
[65] Prakash, S. et al. 2016. Monte-Carlo based uncertainty analysis for CO2 laser microchanneling model. IOP Conf. Series: Materials Science and Engineering. 149(1):012125.
[66] Jensen, M. F. et al. 2003. Microstructure fabrication with a CO2 laser system: characterization and fabrication of cavities produced by raster scanning of the laser Beam. Lab Chip. 3(4):302-307.
[67] Klank, H., J. P. Kutter and O. Geschke. 2002. CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab chip. 4:242-246.
[68] Carbaugh, D. J. et al. 2016. Photolithography with polymethyl methacrylate (PMMA). Semiconductor Science and Technology.31(2):025010.
[69] Koesdjojo, M. T., Y. H. Tennico and V. T. Remcho. 2008. Fabrication of a microfluidic system for capillary electrophoresis using a two-stage embossing technique and solvent welding on poly (methyl methacrylate) with water as a sacrificial layer. Analytical Chemistry. 80(7):2311-2318.
[70] Du, L. et al. 2012. The effect of injection molding PMMA microfluidic chips thickness uniformity on the thermal bonding ratio of chips. Microsystem Technologies. 18(6):815-822.
[71] Mohammed, M. I. and M. P. Y. Desmulliez 2014. CO2 laser manufacturing of lenses for Lab-on-a-Chip systems. Micromachines. 5(3):457-471.
[72] 黃冠仁,2006年, CO2雷射加工高分子及玻璃材料的缺陷改善探討,碩士論文。國立成功大學機械工程學系。
[73] Mohammed, M. I. et al. 2017. Fabrication of microfluidic devices: improvement of surface quality of CO2 laser machined poly(methylmethacrylate) polymer. J. Micromech. Microeng, 27(1):015021, 2017.
[74] Huang, Y. et al. 2010. Surface roughness analysis and improvement of PMMA-based microfluidic chip chambers by CO2 laser cutting. Applied Surface Science. 256(6):1675-1678.
[75] Cheng, J. Y. et al. 2004. Direct-write laser micromachining and universal surface modification of PMMA for device development. Sensors Actuators B. 99(1):186-196.
[76] Mecomber, J. S. et al. 2006. Analytical performance of polymer-based microfluidic devices fabricated By computer numerical controlled machining. Analytical Chemistry. 78(3):936-941.
[77] Prakash, S. and S. Kumar. 2015. Fabrication of microchannels on transparent PMMA using CO2 Laser (10.6 μm) for microfluidic applications: an experimental investigation. International Journal of Precision Engineering and Manufacturing. 16(2):361-366.
[78] 葉士瑋,2010年,熱效應對連續波雷射與脈衝雷射的影響:傳統晶體與鍵合晶體之比,碩 士 論 文。國立交通大學理學院應用科技學程。
[79] Lie, J. Y. et al. 2001. Single pass third-harmonic generation of 310 mW of 355 nm with an all-solid-state laser. Chinese Phys. Lett. 18(12):1589-1591..
[80] Huang, Y. J. et al. 2012. High-power passively Q-switched Nd:YVO4 UV laser at 355 nm. Applied Physics B. 106(4):893-898.
[81] 陳盈同,2006年,準分子雷射加工玻璃表面形貌探討及其應用於微探針製作之研究,博士論文。國立台灣大學機械工程學研究所。
[82] 陳正竹, 2010年,355 nm Nd:YVO4雷射對摻鉻釔鋁石榴石晶體光纖加工之研究,碩士學位論文。國立台灣科技大學機械工程系。
[83] Liu, J. et al. 2014. Surface modification of bisphenol a polycarbonate material by ultraviolet Nd:YVO4 laser highspeed microprocessing technology. J. Micromech. Microeng. 24(8):085002.
[84] Shin, B. S., J. Y. Oh and H. Sohn. 2007. Theoretical and experimental investigations into laser ablation of polyimide and copper films with 355-nm Nd:YVO4 laser. Journal of Materials Processing Technology. 187-188(12):260-263.
[85] Palmieri, F. et al. 2017. Picosecond pulsed laser ablation for the surface preparation of epoxy composites. In" Proceedings of SAMPE 2017", Washington State Convention Center , Seattle, WA, United States.
[86] Ambacher, O. et al. 1999. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. Journal of Applied Physics. 85(6):3222-3233.
[87] Ambacher, O. et al. 2000. Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. Journal of Applied Physics, 87(1):334-344.
[88] Dimitrov, R. et al. 2000. Two-dimensional electron gases in Ga-face and N-face AlGaN/GaN heterostructures grown by plasma-induced molecular beam epitaxy and metalorganic chemical vapor deposition on sapphire. Journal of Applied Physics. 87(7):3375-3380.
[89] Supryadkina. I. et al. 2013. Study of the polarizations of (Al, Ga, AlGa) N nitride compounds and the charge density of various interfaces based on them. Semiconductors. 47(12):1621-1625.
[90] Asbeck , P.M. et al. 1997. Piezoelectric charge densities in AlGaN/GaN HFETs. Electronics Letters. 33(14):1230-1231.
[91] S. J. Pearton. et al. 2010. Recent advances in wide bandgap semiconductor biological and gas sensors. Progress in Materials Science. 55(1):1-59.
[92] Makowski, M. S. et al. 2013. Physisorption of functionalized gold nanoparticles on AlGaN/GaN high electron mobility transistors for sensing applications. Applied Physics Letters. 102(7):074102.
[93] Huang. C. C. et al. 2013. AlGaN/GaN high electron mobility transistors for protein-peptide binding affinity study. Biosensors and Bioelectronics. 41:717-722.
[94] Wang, Y. L. et al. 2009. Fast detection of a protozoan pathogen, Perkinsusmarinus, using AlGaN/GaN high electron mobility transistors. Applied Physics Letters. 94(24):243901.
[95] Kang, B. S. et al. 2007. Enzymatic glucose detection using ZnO nanorods on the gate region of AlGaN/GaN high electron mobility transistors. Applied Physics Letters. 91(25):252103.
[96] Kang, B. S. et al. 2008. Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors. Journal of Applied Physics. 104(3):031101.
[97] Wang, Y. L. et al. 2008. Botulinum toxin detection using AlGaN/GaN high electron mobility transistors. Applied Physics Letters. 93(26):262101.
[98] Biasucci, L. M. et al. 1996. Elevated levels of interleukin-6 in unstable angina. Circulation. 94(5):874-877.
[99] Shrive, A. K. et al. 1996. Three dimensional structure of human C-reactive protein. Nature Structural Biology. 3:346-354.
[100] Pearson, T. A. et al. 2003. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation. 107(3):499-511.
[101] Chen, P. C. et al. 2017. Field-effect transistor-based biosensors and a portable device for Personal Healthcare. ECS J. Solid State Sci. Technol. 6(7):Q7-Q76.
[102] Hsu, C. P. et al. 2017. A package technology for miniaturized field-effect transistor -based biosensors and the sensor array. ECS Journal of Solid State Science and Technology. 6(5):63-67.
[103] Lin, C. L. et al. 2014. An Integrated microfluidic system using field-effect transistors for CRP detection, "MEMS 2014", 250-253, San Francisco, CA, USA.
[104] Vericat, C. et al. 2010. Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chemical Society Reviews. 39(5):1805-1834.
[105] Huang, C. J. et al. 2010. Integrated microfluidic system for rapid screening of CRP aptamers utilizing systematic evolution of ligands by exponential enrichment (SELEX). Biosensors and Bioelectronics. 25(7):1761-1766.
[106] Weng, C. H., C. J. Huang and G. B. Lee. 2012. Screening of aptamers on microfluidic systems for clinical applications. Sensors. 12(7):9514-9529.