簡易檢索 / 詳目顯示

研究生: 周世文
Chou, Shih-Wen
論文名稱: 二元字串的字首區段互換
Prefix Block-Interchanges on Binary Strings
指導教授: 盧錦隆
Lu, Chin Lung
口試委員: 李家同
Richard Chia-Tung Lee
唐傳義
Chuan-Yi Tang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 19
中文關鍵詞: 演算法區段互換字首區段互換二元字串
外文關鍵詞: algorithms, block-interchanges, prefix block-interchanges, binary strings
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 作用在一個字串S的區段互換(block-interchange)是把S中兩個沒有重疊但未必相鄰的子字串做交換。字首區段互換(prefix block-interchange)是一個特別的區段互換,在兩個互換的子字串中,其中一個子字串必需為整個字串的字首(prefix)。在本論文中,我們研究如何利用字首區段互換對二元字串做排序的問題(sorting by prefix block-interchanges on binary strings),這個問題的目的是要去找出最少次數的字首區段互換來排序一個二元字串。除此之外,我們也去研究如何計算出兩個二元字串之間的字首區段互換距離(prefix block-interchange distance be-tween binary strings),這個問題的目的是要去計算出最少次數的字首區段互換來把一個二元字串轉換成另一個二元字串。結果,我們設計出一個線性時間的演算法可以來解決二元字串的字首區段互換排序問題,同時我們也證明了兩個二元子串之間的字首區段互換距離是一個NP-hard問題。


    A block-interchange acting on a string 𝑆 exchanges two non-overlapping but not necessary adjacent substrings in 𝑆. A prefix block-interchange is a special block-interchange in which one of the two exchanged substrings is restricted to a prefix of 𝑆. In this thesis, we study the problem of sorting by prefix block-interchanges on binary strings, which is to find the minimum number of prefix block-interchanges to sort a given binary string. In addition, we study the problem of computing the prefix block-interchange distance between two binary strings, which is to compute the minimum number of prefix block-interchanges to transform a given binary string into another given binary string. Consequently, we design a linear-time algorithm to solve the problem of sorting by prefix block-interchange on binary strings and also show that the problem of computing the prefix block-interchange distance between two binary strings is NP-hard.

    中文摘要 Abstract Acknowledgement Contents Chapter 1 Introduction Chapter 2 Preliminaries Chapter 3 Sorting by PBI on binary strings Chapter 4 Prefix block-interchange distance Chapter 5 Conclusions References

    [1] A.J. Radcliffe, A.D. Scott, E.L. Wilmer, Reversals and transpositions over finite alphabets, SIAM J. Discrete Math. (2006).
    [2] A. K. Dutta, M. Hasan, M. S. Rahman, Prefix transpositions on binary strings, Information Processing Letters 113 (2013) 265-270.
    [3] B. Chitturi, H. Sudborough, Bounding prefix transposition distance for strings and permutations, Theoretical Computer Science 421 (2012) 15-24.
    [4] C.A.J. Hurkens, L. van Iersel, J. Keijsper, S. Kelk, L. Stougie, J. Tromp, Prefix reversals on binary and ternary strings, SIAM J. Discrete Math. 21 (3) (2007) 592–611.
    [5] D.A. Christie, R.W. Irving, Sorting strings by reversals and by transpositions, SIAM J. Discrete Math. 14 (2) (2001) 289-300.
    [6] M. R. Grey, D.S. Johnson, Computer And Intractability: AGuide To The Theory Of NP-completeness, W. H. Freeman, San Francisco, CA, 1979.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE