研究生: |
陳志誠 Chen, Chih-Cheng |
---|---|
論文名稱: |
具有製程、電壓、溫度不敏感性電壓-時間-電壓轉換器之十二位元二階雜訊塑形連續漸進式類比數位轉換器 A 12-ENOB Second-Order Noise Shaping SAR ADC with PVT-insensitive Voltage-Time-Voltage Converter |
指導教授: |
謝志成
Hsieh, Chih-Cheng |
口試委員: |
李泰成
Lee, Tai-Cheng 謝秉璇 Hsieh, Ping-Hsuan 陳佳宏 Chen, Chia-Hung |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2021 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 過採樣 、雜訊塑形 、連續漸進式類比數位轉換器 |
外文關鍵詞: | oversampling, noise-shaping, SAR ADC |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一個具有製程、電壓、溫度不敏感性電壓-時間-電壓轉換器之十二位元二階雜訊塑形連續漸進式(successive-approximation register, SAR)類比數位轉換器(analog-to-digital converter, ADC)。
本論文使用了電壓-時間-電壓(Voltage-Time-Voltage, V-T-V)轉換器提供了精準的開環增益,由於僅依靠電容與電流比例,其增益本質上對於製成、電壓與溫度(Process-Voltage-Temperature, PVT)具有不敏感性,因此並不需要教正即可實現理想的雜訊轉換函數 (noise transfer function, NTF)。此外,V-T-V轉換器只消耗動態功率。透過使用元件比例設計與動態功耗方式,所提出的ADC具有抵抗PVT變異與良好功率效益的特性。
為了驗證本電路,此架構使用90奈米1P9M互補式金氧半導體製程製作,核心電路面積為429.7 x 90.7um2,在1伏特電源電壓及1千萬赫茲取樣頻率操作下,此晶片在625千赫茲輸入頻寬實現之SNDR為73.8dB,其對應的ENOB為12-bit,功率消耗為71.4微瓦,而等效的Walden figure of merit (FOMW)為14.2fJ/conversion-step,Schreier figure of merit (FOMS)為173.2dB。
This thesis presents a 12-ENOB second-order noise shaping successive-approximation register (NS SAR) analog-to-digital converter (ADC) with PVT-insensitive voltage-time-voltage (V-T-V) converter.
The proposed NS SAR ADC uses the V-T-V converter to provide an accurate open-loop gain stage for active residue process. By relying on the capacitor and current ratio only, the gain of V-T-V converter is inherently PVT-insensitive. Therefore, no calibration is needed and an aggressive noise transfer function (NTF) can be realized. Moreover, the V-T-V converter consumes only dynamic power. By using ratio design and dynamic manner, the proposed ADC is PVT-insensitive and energy efficient.
The prototype was fabricated in 90nm 1P9M CMOS technology with a core area of 429.7 x 90.7um2. At 1V supply voltage and 10MS/s sampling rate, the ADC achieves the SNDR of 73.8dB and the corresponding ENOB is 12-bit at the input bandwidth of 625kHz. It consumes 71.4µW power totally, resulting in the Walden figure of merit (FOMW) of 14.2fJ/conversion-step and Schreier figure of merit (FOMS) of 173.2 dB, respectively.
[1] B. Murmann, "ADC Performance Survey 1997-2021," [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html.
[2] W. Guo, H. Zhuang and N. Sun, "A 13b-ENOB 173dB-FoM 2nd-order NS SAR ADC with passive integrators," 2017 Symposium on VLSI Circuits, 2017, pp. C236-C237.
[3] H. Zhuang et al., "A Second-Order Noise-Shaping SAR ADC With Passive Integrator and Tri-Level Voting," in IEEE Journal of Solid-State Circuits, vol. 54, no. 6, pp. 1636-1647, June 2019.
[4] Y. Hwang, Y. Song, J. Park and D. Jeong, "A 0.6-to-1V 10k-to-100kHz BW 11.7b-ENOB Noise-Shaping SAR ADC for IoT sensor applications in 28-nm CMOS," 2018 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2018, pp. 247-248.
[5] S. Li, B. Qiao, M. Gandara and N. Sun, "A 13-ENOB 2nd-order noise-shaping SAR ADC realizing optimized NTF zeros using an error-feedback structure," 2018 IEEE International Solid - State Circuits Conference - (ISSCC), 2018, pp. 234-236.
[6] S. Li, B. Qiao, M. Gandara, D. Z. Pan and N. Sun, "A 13-ENOB Second-Order Noise-Shaping SAR ADC Realizing Optimized NTF Zeros Using the Error-Feedback Structure," in IEEE Journal of Solid-State Circuits, vol. 53, no. 12, pp. 3484-3496, Dec. 2018.
[7] J. S. Yoon, J. Hong and J. Kim, "A Digitally-Calibrated 70.98dB-SNDR 625kHz-Bandwidth Temperature-Tolerant 2nd-order Noise-Shaping SAR ADC in 65nm CMOS," 2019 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2019, pp. 195-196.
[8] X. Tang et al., "A 13.5b-ENOB Second-Order Noise-Shaping SAR with PVT-Robust Closed-Loop Dynamic Amplifier," 2020 IEEE International Solid- State Circuits Conference - (ISSCC), 2020, pp. 162-164.
[9] X. Tang et al., "A 13.5-ENOB, 107-μW Noise-Shaping SAR ADC With PVT-Robust Closed-Loop Dynamic Amplifier," in IEEE Journal of Solid-State Circuits, vol. 55, no. 12, pp. 3248-3259, Dec. 2020.
[10] B. Razavi, Design of Analog CMOS Integrated Circuits, 1st ed.: McGraw-Hill 2002.
[11] M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. Klumperink and B. Nauta, "A 1.9μW 4.4fJ/Conversion-step 10b 1MS/s Charge-Redistribution ADC," in IEEE ISSCC Dig. Tech. Papers, pp. 244-610, Feb. 2008.
[12] P. M. Figueiredo and J. C. Vital, "Kickback noise reduction techniques for CMOS latched comparators," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 7, pp. 541-545, July 2006.
[13] C. Liu, S. Chang, G. Huang and Y. Lin, "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure," in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, April 2010.
[14] Z. Chen, M. Miyahara and A. Matsuzawa, "A 2nd order fully-passive noise-shaping SAR ADC with embedded passive gain," 2016 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2016.
[15] Y. Lin, C. Lin, S. Tsou, C. Tsai and C. Lu, "A 40MHz-BW 320MS/s Passive Noise-Shaping SAR ADC With Passive Signal-Residue Summation in 14nm FinFET," 2019 IEEE International Solid- State Circuits Conference - (ISSCC), 2019, pp. 330-332.
[16] J. Liu, X. Wang, Z. Gao, M. Zhan, X. Tang and N. Sun, "A 40kHz-BW 90dB-SNDR Noise-Shaping SAR with 4× Passive Gain and 2nd-Order Mismatch Error Shaping," 2020 IEEE International Solid- State Circuits Conference - (ISSCC), 2020, pp. 158-160.
[17] K. Obata, K. Matsukawa, T. Miki, Y. Tsukamoto and K. Sushihara, "A 97.99 dB SNDR, 2 kHz BW, 37.1 µW noise-shaping SAR ADC with dynamic element matching and modulation dither effect," 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), 2016, pp. 1-2.
[18] Y. Shu, L. Kuo and T. Lo, "An Oversampling SAR ADC With DAC Mismatch Error Shaping Achieving 105 dB SFDR and 101 dB SNDR Over 1 kHz BW in 55 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 51, no. 12, pp. 2928-2940, Dec. 2016.
[19] L. Jie, B. Zheng, H. Chen, R. Wang and M. P. Flynn, "A 4th-Order Cascaded-Noise-Shaping SAR ADC with 88dB SNDR Over 100kHz Bandwidth," 2020 IEEE International Solid- State Circuits Conference - (ISSCC), 2020, pp. 160-162.
[20] C. Liu and M. Huang, "A 0.46mW 5MHz-BW 79.7dB-SNDR noise-shaping SAR ADC with dynamic-amplifier-based FIR-IIR filter," 2017 IEEE International Solid-State Circuits Conference (ISSCC), 2017, pp. 466-467.
[21] C. Lillebrekke, C. Wulff and T. Ytterdal, "Bootstrapped switch in low-voltage digital 90nm CMOS technology," 2005 NORCHIP, 2005, pp. 234-236.
[22] Y. Zhu, C.-H. Chan, U.-F. Chio, S.-W. Sin, S.-P. U, R. P. Martins, and F. Maloberti, "A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 45, no. 6, pp. 1111-1121, Jun. 2010.
[23] S. W. M. Chen, R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2669–2680, Dec. 2006.
[24] H. Garvik, C. Wulff and T. Ytterdal, "An 11.0 bit ENOB, 9.8 fJ/conv.-step noise-shaping SAR ADC calibrated by least squares estimation," 2017 IEEE Custom Integrated Circuits Conference (CICC), 2017, pp. 1-4.
[25] S. Pavan, R. Schreier, and G. C. Temes, Understanding Delta- Sigma Data Converters, 2nd ed. Piscataway, NJ, USA: IEEE Press, 2017.
[26] J. M. de la Rosa, "Sigma-Delta Modulators: Tutorial Overview, Design Guide, and State-of-the-Art Survey," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 1, pp. 1-21, Jan. 2011.
[27] M. A. Ghanad, C. Dehollain and M. M. Green, "Noise analysis for time-domain circuits," 2015 IEEE International Symposium on Circuits and Systems (ISCAS), 2015, pp. 149-152.