研究生: |
楊筱嵐 Yang, Hsiao-Lan |
---|---|
論文名稱: |
新型邏輯製程可自動編程差動多次寫入非揮發性記憶體 A New Logic-Compatible Differential Self-Selective Program Multiple-Time Programmable Non-Volatile Memory Cell |
指導教授: |
金雅琴
King, Ya-Chin 林崇榮 Lin, Chrong-Jung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 可多次寫入 、非揮發性記憶體 、差動 、浮動閘 、邏輯製程記憶體 、自動編程 |
外文關鍵詞: | MTP, Non-Volatile Memory, differential, floating gate, logic-NVM, Self-Selective |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在積體晶片系統的發展上,內嵌式記憶體是不可或缺的重要組成,這種不需額外的製程步驟即可整合到CMOS邏輯製程的非揮發性記憶體也逐漸為大家所重視。緃使許多記憶體技術在該領域被提出且進行競爭,但提供多次可程式設計性的記憶體並不多見。本論文提出一新型邏輯製程N通道差動內嵌式記憶體,此可程式編輯記憶體利用差動結構的設計,可達到自動完成寫入動作,具有完全符合CMOS邏輯製程技術。
此新型邏輯製程可自動編程差動多次寫入非揮發性記憶體利用選擇閘極和源極來控制通道熱離子轟擊引發熱電子注入編程操作方式、與熱電洞注入完成抹除操作,達成可多次編輯功能;其組成可縮小至約三個N型通道金氧半場效電晶體,有效的降低元件面積。此新型記憶胞的編程抹除時間在2毫秒內,元件的耐久度高達10萬次,資料保存性在85℃、120℃、150℃皆通過1000小時的考驗。在差動的架構設計上,此記憶胞提出新型的自我選擇寫入功能,拉大邏輯0與1的可辨別範圍,有效提高資料保存度與可靠度、解決因製程可能產生的不對稱問題並簡化相對應的電路設計。本文所提出之新型自動編程差動記憶體擁有良好的特性,並為全邏輯製程之系統整合晶片提供新的選擇和應用。
During the progression of integrated system on chip, the embedded nonvolatile memory (NVM), which does not need extra masks and to be fabricated by standard complementary metal oxide semiconductor (CMOS) process have been widely studied. Though there are many technologies and designs have been studied and developed for logic NVM applications, but until now, there is not an overall solution which can serve high program and erase performance, thin gate oxide of CMOS logic process constraint, and superior high endurance property with an acceptable cell size. This study proposes a brand-new cell structure and operation method to achieve the above merits with fully CMOS logic compatible technology and processes.
The new logic-compatible differential self-selective program multiple-time programmable nonvolatile memory, which is using CHE program and CHH erase by controlling the voltage of SG and BL, the program/erase speed can be achieved within 2msec, and the cell also consists of 3 transistors only. Moreover, the on/off window is successfully risen up to 106 orders post 105 cycling stresses. In terms of reliability characterization, the cell has been verified to pass the criteria after 1000 hours of retention bake at 85℃, 120℃, and 150℃. Finally, the proposed new self-selective program method is able to increase the sensing window twice, to improve the reliability effectively, and to avoid the mismatch problem, further to simplify the circuit design by overhead reduction. The high performance differential-nonvolatile memory cell has been demonstrated and providing a very promising solution in logic NVM application beyond 0.18um nodes.
[1] D. Kahng and S. M. Sze, “A floating gate and its application to memory devices,” Bell Syst. Tech. J., vol.46, pp. 1283, 1967.
[2] D. Frohman-Bentchkowsky, “A fully-decoded 2048-Bit electrically-programmable MOS-ROM,” ISSCC Technical Digest, Feb. 1971, pp. 80-81., 1971.
[3] K. Ohsaki, N. Asamoto, I;. Takagaki, ”A Single Poly EEPROM Cell Structure for Use in Standard COMS Processes,” IEEE J. Solid State Circuits, Vol. 29, No. 3, March 1994, PP. 311-316.
[4] P. Kazcounian and B. Eitan, “A single-poly EPROM for custom CMOS logic applications,” IEEE Custom Integrated Circuits Conference, pp. 59-62, 1986.
[5] M.-H. Chi and A. Bergemont, “A New Single-poly Flash Memory Cell with Low-voltage and Low power Operations for Embedded Applications,” IEEE Device Research Conference Digest, 5th, pp. 126-127, 1997.
[6] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells-an overview,” Proc. IEEE, pp. 1248, 1997.
[7] S. Lai, “Flash memories: where we were and where we are going,” IEEE IEDM Technical Digest, pp. 971, 1998.
[8] K.-H. Lee and Y.-C. Kin, “New single-poly EEPROM with cell size down to 8 F for high density embedded nonvolatile memory applications,” in Symp. VLSI Tech. Dig., 2003, pp. 93–94.
[9] K. Naruke, S. Taguchi, and M. Wada, “Stress-induced leakage current limiting to scale down EEPROM tunnel oxide thickness,” in IEDM Tech. Dig. 1988, p. 424.
[10] S. Aritome, R. Shirota, G. Hemnik, T. Endoh, and F. Masuoka, “Reliability issues of Flash memory cells,” Proc. IEEE, vol. 81, pp. 776–788, May 1993.
[11] G. Iannaccone and S. Gennai, “Program, erase and retention times of thin oxide Flash-EEPROMs,” VLSI Des., vol. 13, no. 1–4, pp. 431–434, 2001.
[12] D. J. Dumin, S. K. Mopuri, S. Vanchinathan, R. S. Scott, R. Subramoniam, and T. G. Lewis, “High field related thin oxide wearout and breakdown,” IEEE Trans. Electron Devices, vol. 42, pp. 760–772, 1995.
[13] R. Degraeve, B. Kaczer, and G. Groeseneken, “Degradation and breakdown in thin oxide layers: Mechanisms, models and reliability prediction,” Microelectron. Reliab., vol. 39, pp. 1445–1460, 1999.
[14] T. Ogura, M. Mihara, Y. Kawajiri, K. Kobayashi, S. Shimizu, S. Shukuri, N. Ajika and M. Nakashima, “A Highly Reliable Logic NVM “eCFlash (embedded CMOS Flash)” Utilizing Differential Sense-Latch Cell with Charge-Trapping Storage” NVSM Workshop, 2008 and 2008 International Conference on Memory Technology and Design.
[15] Tadahiko Horiuchi, “Storage and Recovery of Data Based on Change in MIS Transistor Characteristics,” Nscore Inc. No. 7,149,104
[16] Kenji Noda, “Nonvolatile Memory Utilizing Asymmetric Characteristics of Hot-Carrier Effect,” Nscore.Inc., No. 7,321,505
[17] Y. Ma, T. Gilliland, B. Wang, R. Paulsen, A. Pesavento, C. H. Wang, H. Nguyen, T. Humes, and C. Diorio, “Reliability of pFET EEPROM with 70-Å tunnel oxide manufactured in generic logic CMOS processes,” IEEE Trans. Device Mater. Rel., vol. 4, no. 3, pp. 353–358, Sep. 2004.
[18] Alberto Pesavento, Frederic J. Bernard and John D. Hyde, “PFET Nonvolatile Memory” Impinj, Inc., No. 7,221,596
[19] Bin Wang, Hoc Nguyen, Yanjun Ma, and Ron Paulsen, “Highly Reliable 90-nm Logic Multitime Programmable NVM Cells Using Novel Work-Function-Engineered Tunneling Devices,” in Electron Devices, IEEE Transactions on Sept. 2007.
[20] Bin Wang, Yanjun Ma, Andy Horch and Ron Paulsen, “Reliability of a 90nm Embedded Multi-time Programmable Logic NVM Cells Using Work-function Engineered Tunneling Device,” in reliability physics symposium, April 2007.
[21] Bin Wang and Yanjun Ma, “Opportunities and Challenges in Multi-times-programmable Floating- Gate Logic Non-Volatile Memories,” in Non-Volatile Semiconductor Memory Workshop, 2008 and 2008 International Conference on Memory Technology and Design. NVSMW/ICMTD 2008.
[22] Bin Wang, Martin Niset, Yanjun Ma, Hoc Nguyen and Ron Paulsen, “Scaling Tunneling Oxide to 50Å in Floating-Gate Logic NVM at 65nm and Beyond” IIRW final report, 2007.
[23] C. Hu, “Lucky-electron model of channel hot electron emission,” in IEDM Tech. Dig., p. 22, 1979.
[24] M. Lenzlinger and E. H. Snow, “Fowler-Nordheim tunneling into thermally grown SiO2,” J. Appl. Phys., vol.40, no.1, pp. 278-283, 1969.
[25] Z. A. Weinberg, “On tunneling in MOS structure,” J. Appl. Phys., vol. 53, pp. 5052, 1982.
[26] B. Ricco and M. V. Fischetti, “Temperature dependence of the currents in silicon dioxide in the high field tunneling regime,” J. Appl. Phys., vol. 55, pp. 4322, 1984.
[27] P. Olivio, T.N. Nguyen, and B. Ricco, “High-field-induced degradation in ultra-thin SiO2 films,” IEEE Trans. Electron Devices, p.2259, Dec. 1988
[28] Reza Moazzami and Chenming Hu, “Stress-induced current in thin silicon dioxide films,” IEEE IEDM Tech. Dig., p.139. 1992
[29] Hu, “Thin oxide reliability,” IEEE IEDM Tech. Dig., p.368, 1985
[30] S. Haddad, C. Chang, B. Swaminathan and J. Lien, “Degradations due to hole trapping in flash memory cells,” IEEE Electron Device Lett., vol. 10, Issue 3,pp. 117-119, 1989.
[31] N. Aijka, M. Ohi, H. Arima, T. Matsukawa, and N. Tsubouchi, “A 5 volt only 16M bit flash EEPROM cell with a simple stacked gate structure,” IEEE IEDM Tech. Dig., P. 115, 1990
[32] Brand, K. Wu, S. Pan, and D. Chin, “Novel read disturb failure mechanism induced by FLASH cycling,” IEEE International Reliability Physics Symp., p. 127, 1993
[33] F. Arai, T. Maruyama, R. Shirota, “Extended data retention process technology for highly reliable flash EEPROMs of 106 to 107 W/E cycles” IEEE International Reliability Physics Symp., 1998
[34] B. De Salvo, G. Ghibaudo, G. Pananakakis, G. Guillaumot, P. Chandelier, and G. Reimbold, “A new extrapolation law for data-retention time-to-failure of nonvolatile memories,” IEEE Electron Device Lett., Vol. 20, p. 197, May 1999.
[35] L. Kung Hong, “study of high-Density embedded single-polysilicon nonvolatile memory,” 1993
[36] M. Chi and A. Bergemont, “Multilevel flash/EPROM memories: New self-convergent programming methods for low-voltage applications,”IEEE IEDM Tech. Dig., 1995, p. 271.