簡易檢索 / 詳目顯示

研究生: 楊筱嵐
Yang, Hsiao-Lan
論文名稱: 新型邏輯製程可自動編程差動多次寫入非揮發性記憶體
A New Logic-Compatible Differential Self-Selective Program Multiple-Time Programmable Non-Volatile Memory Cell
指導教授: 金雅琴
King, Ya-Chin
林崇榮
Lin, Chrong-Jung
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 74
中文關鍵詞: 可多次寫入非揮發性記憶體差動浮動閘邏輯製程記憶體自動編程
外文關鍵詞: MTP, Non-Volatile Memory, differential, floating gate, logic-NVM, Self-Selective
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在積體晶片系統的發展上,內嵌式記憶體是不可或缺的重要組成,這種不需額外的製程步驟即可整合到CMOS邏輯製程的非揮發性記憶體也逐漸為大家所重視。緃使許多記憶體技術在該領域被提出且進行競爭,但提供多次可程式設計性的記憶體並不多見。本論文提出一新型邏輯製程N通道差動內嵌式記憶體,此可程式編輯記憶體利用差動結構的設計,可達到自動完成寫入動作,具有完全符合CMOS邏輯製程技術。
    此新型邏輯製程可自動編程差動多次寫入非揮發性記憶體利用選擇閘極和源極來控制通道熱離子轟擊引發熱電子注入編程操作方式、與熱電洞注入完成抹除操作,達成可多次編輯功能;其組成可縮小至約三個N型通道金氧半場效電晶體,有效的降低元件面積。此新型記憶胞的編程抹除時間在2毫秒內,元件的耐久度高達10萬次,資料保存性在85℃、120℃、150℃皆通過1000小時的考驗。在差動的架構設計上,此記憶胞提出新型的自我選擇寫入功能,拉大邏輯0與1的可辨別範圍,有效提高資料保存度與可靠度、解決因製程可能產生的不對稱問題並簡化相對應的電路設計。本文所提出之新型自動編程差動記憶體擁有良好的特性,並為全邏輯製程之系統整合晶片提供新的選擇和應用。


    During the progression of integrated system on chip, the embedded nonvolatile memory (NVM), which does not need extra masks and to be fabricated by standard complementary metal oxide semiconductor (CMOS) process have been widely studied. Though there are many technologies and designs have been studied and developed for logic NVM applications, but until now, there is not an overall solution which can serve high program and erase performance, thin gate oxide of CMOS logic process constraint, and superior high endurance property with an acceptable cell size. This study proposes a brand-new cell structure and operation method to achieve the above merits with fully CMOS logic compatible technology and processes.
    The new logic-compatible differential self-selective program multiple-time programmable nonvolatile memory, which is using CHE program and CHH erase by controlling the voltage of SG and BL, the program/erase speed can be achieved within 2msec, and the cell also consists of 3 transistors only. Moreover, the on/off window is successfully risen up to 106 orders post 105 cycling stresses. In terms of reliability characterization, the cell has been verified to pass the criteria after 1000 hours of retention bake at 85℃, 120℃, and 150℃. Finally, the proposed new self-selective program method is able to increase the sensing window twice, to improve the reliability effectively, and to avoid the mismatch problem, further to simplify the circuit design by overhead reduction. The high performance differential-nonvolatile memory cell has been demonstrated and providing a very promising solution in logic NVM application beyond 0.18um nodes.

    摘要 ii Abstract ii 誌謝 iii 內文目錄 iv 附圖目錄 vi 表格目錄 viii 第一章 緒論 1 1.1單一複晶閘非揮發性記憶體之簡介 1 1.2 論文大綱 2 第二章 符合邏輯製程的非揮發性記憶體之回顧 4 2.1 符合邏輯製程之單一複晶閘非揮發性記憶體 4 2.1.1 SIPPOS(Single-poly pure CMOS)可電性程式化記憶體 4 2.1.2 單一複晶閘可電性程式化記憶體結構 4 2.2符合邏輯製程之差動非揮發性記憶體 5 2.2.1 NSCore - PermSRAM 記憶體 5 2.2.2 AEON 非揮發性記憶體 6 2.3 載子注入機制回顧 6 2.3.1 通道熱離子轟擊引發熱電子(CHE)電洞(CHH)注入機制 7 2.3.2 Fowler-Nordheim (FN) 穿遂效應 7 2.3.3 Band-to-Band穿遂注入機制 8 2.4 小結 8 第三章 新型邏輯製程可自動編程差動記憶體之結構與操作機制介紹 17 3.1 元件架構與陣列排列方式 17 3.2 差動記憶體之操作原理與特點 18 3.3 編程,抹除以及讀取操作 19 3.3.1編程操作原理 19 3.3.2自我選擇編程操作原理 19 3.3.3抹除操作原理 19 3.3.4讀取操作原理 20 3.4 小結 20 第四章 新型邏輯製程可自動編程差動記憶體之特性分析 33 4.1 元件基本特性分析 33 4.1.1 不同的編程條件與比較 33 4.1.2 自我選擇編程操作之特性分析 34 4.1.3 以Fowler Nordheim穿遂效應為抹除操作之特性分析 35 4.1.4 以CHH注入機制為抹除操作之特性分析 35 4.1.5 以Band-to-Band穿遂注入機制為抹除操作之特性分析 35 4.1.6 讀取之特性分析與最佳化 35 4.2 元件可靠度 36 4.2.1 元件干擾現象 36 4.2.1.1 編程干擾特性 36 4.2.1.2 讀取干擾特性 37 4.2.2 資料保存性 37 4.2.3 元件耐久度 38 4.3 小結 38 第五章 此新型元件之設計與最佳化 56 5.1 抹除操作機制之探討 56 5.2 元件尺寸之最佳化分析 56 5.3 佈局設計之最佳化分析 57 5.4 小結 58 第六章 總結 69 6.1 新元件與其他相關之邏輯非揮發性記憶體的優點分析 69 6.2 結語與未來展望 69 參考文獻 71

    [1] D. Kahng and S. M. Sze, “A floating gate and its application to memory devices,” Bell Syst. Tech. J., vol.46, pp. 1283, 1967.
    [2] D. Frohman-Bentchkowsky, “A fully-decoded 2048-Bit electrically-programmable MOS-ROM,” ISSCC Technical Digest, Feb. 1971, pp. 80-81., 1971.
    [3] K. Ohsaki, N. Asamoto, I;. Takagaki, ”A Single Poly EEPROM Cell Structure for Use in Standard COMS Processes,” IEEE J. Solid State Circuits, Vol. 29, No. 3, March 1994, PP. 311-316.
    [4] P. Kazcounian and B. Eitan, “A single-poly EPROM for custom CMOS logic applications,” IEEE Custom Integrated Circuits Conference, pp. 59-62, 1986.
    [5] M.-H. Chi and A. Bergemont, “A New Single-poly Flash Memory Cell with Low-voltage and Low power Operations for Embedded Applications,” IEEE Device Research Conference Digest, 5th, pp. 126-127, 1997.
    [6] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells-an overview,” Proc. IEEE, pp. 1248, 1997.
    [7] S. Lai, “Flash memories: where we were and where we are going,” IEEE IEDM Technical Digest, pp. 971, 1998.
    [8] K.-H. Lee and Y.-C. Kin, “New single-poly EEPROM with cell size down to 8 F for high density embedded nonvolatile memory applications,” in Symp. VLSI Tech. Dig., 2003, pp. 93–94.
    [9] K. Naruke, S. Taguchi, and M. Wada, “Stress-induced leakage current limiting to scale down EEPROM tunnel oxide thickness,” in IEDM Tech. Dig. 1988, p. 424.
    [10] S. Aritome, R. Shirota, G. Hemnik, T. Endoh, and F. Masuoka, “Reliability issues of Flash memory cells,” Proc. IEEE, vol. 81, pp. 776–788, May 1993.
    [11] G. Iannaccone and S. Gennai, “Program, erase and retention times of thin oxide Flash-EEPROMs,” VLSI Des., vol. 13, no. 1–4, pp. 431–434, 2001.
    [12] D. J. Dumin, S. K. Mopuri, S. Vanchinathan, R. S. Scott, R. Subramoniam, and T. G. Lewis, “High field related thin oxide wearout and breakdown,” IEEE Trans. Electron Devices, vol. 42, pp. 760–772, 1995.
    [13] R. Degraeve, B. Kaczer, and G. Groeseneken, “Degradation and breakdown in thin oxide layers: Mechanisms, models and reliability prediction,” Microelectron. Reliab., vol. 39, pp. 1445–1460, 1999.
    [14] T. Ogura, M. Mihara, Y. Kawajiri, K. Kobayashi, S. Shimizu, S. Shukuri, N. Ajika and M. Nakashima, “A Highly Reliable Logic NVM “eCFlash (embedded CMOS Flash)” Utilizing Differential Sense-Latch Cell with Charge-Trapping Storage” NVSM Workshop, 2008 and 2008 International Conference on Memory Technology and Design.
    [15] Tadahiko Horiuchi, “Storage and Recovery of Data Based on Change in MIS Transistor Characteristics,” Nscore Inc. No. 7,149,104
    [16] Kenji Noda, “Nonvolatile Memory Utilizing Asymmetric Characteristics of Hot-Carrier Effect,” Nscore.Inc., No. 7,321,505
    [17] Y. Ma, T. Gilliland, B. Wang, R. Paulsen, A. Pesavento, C. H. Wang, H. Nguyen, T. Humes, and C. Diorio, “Reliability of pFET EEPROM with 70-Å tunnel oxide manufactured in generic logic CMOS processes,” IEEE Trans. Device Mater. Rel., vol. 4, no. 3, pp. 353–358, Sep. 2004.
    [18] Alberto Pesavento, Frederic J. Bernard and John D. Hyde, “PFET Nonvolatile Memory” Impinj, Inc., No. 7,221,596
    [19] Bin Wang, Hoc Nguyen, Yanjun Ma, and Ron Paulsen, “Highly Reliable 90-nm Logic Multitime Programmable NVM Cells Using Novel Work-Function-Engineered Tunneling Devices,” in Electron Devices, IEEE Transactions on Sept. 2007.
    [20] Bin Wang, Yanjun Ma, Andy Horch and Ron Paulsen, “Reliability of a 90nm Embedded Multi-time Programmable Logic NVM Cells Using Work-function Engineered Tunneling Device,” in reliability physics symposium, April 2007.
    [21] Bin Wang and Yanjun Ma, “Opportunities and Challenges in Multi-times-programmable Floating- Gate Logic Non-Volatile Memories,” in Non-Volatile Semiconductor Memory Workshop, 2008 and 2008 International Conference on Memory Technology and Design. NVSMW/ICMTD 2008.
    [22] Bin Wang, Martin Niset, Yanjun Ma, Hoc Nguyen and Ron Paulsen, “Scaling Tunneling Oxide to 50Å in Floating-Gate Logic NVM at 65nm and Beyond” IIRW final report, 2007.
    [23] C. Hu, “Lucky-electron model of channel hot electron emission,” in IEDM Tech. Dig., p. 22, 1979.
    [24] M. Lenzlinger and E. H. Snow, “Fowler-Nordheim tunneling into thermally grown SiO2,” J. Appl. Phys., vol.40, no.1, pp. 278-283, 1969.
    [25] Z. A. Weinberg, “On tunneling in MOS structure,” J. Appl. Phys., vol. 53, pp. 5052, 1982.
    [26] B. Ricco and M. V. Fischetti, “Temperature dependence of the currents in silicon dioxide in the high field tunneling regime,” J. Appl. Phys., vol. 55, pp. 4322, 1984.
    [27] P. Olivio, T.N. Nguyen, and B. Ricco, “High-field-induced degradation in ultra-thin SiO2 films,” IEEE Trans. Electron Devices, p.2259, Dec. 1988
    [28] Reza Moazzami and Chenming Hu, “Stress-induced current in thin silicon dioxide films,” IEEE IEDM Tech. Dig., p.139. 1992
    [29] Hu, “Thin oxide reliability,” IEEE IEDM Tech. Dig., p.368, 1985
    [30] S. Haddad, C. Chang, B. Swaminathan and J. Lien, “Degradations due to hole trapping in flash memory cells,” IEEE Electron Device Lett., vol. 10, Issue 3,pp. 117-119, 1989.
    [31] N. Aijka, M. Ohi, H. Arima, T. Matsukawa, and N. Tsubouchi, “A 5 volt only 16M bit flash EEPROM cell with a simple stacked gate structure,” IEEE IEDM Tech. Dig., P. 115, 1990
    [32] Brand, K. Wu, S. Pan, and D. Chin, “Novel read disturb failure mechanism induced by FLASH cycling,” IEEE International Reliability Physics Symp., p. 127, 1993
    [33] F. Arai, T. Maruyama, R. Shirota, “Extended data retention process technology for highly reliable flash EEPROMs of 106 to 107 W/E cycles” IEEE International Reliability Physics Symp., 1998
    [34] B. De Salvo, G. Ghibaudo, G. Pananakakis, G. Guillaumot, P. Chandelier, and G. Reimbold, “A new extrapolation law for data-retention time-to-failure of nonvolatile memories,” IEEE Electron Device Lett., Vol. 20, p. 197, May 1999.
    [35] L. Kung Hong, “study of high-Density embedded single-polysilicon nonvolatile memory,” 1993
    [36] M. Chi and A. Bergemont, “Multilevel flash/EPROM memories: New self-convergent programming methods for low-voltage applications,”IEEE IEDM Tech. Dig., 1995, p. 271.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE