研究生: |
曹嘉芬 Chia-Fen Tsao |
---|---|
論文名稱: |
研究二分量玻色愛因斯坦凝聚現象在磁場中作用的數值模擬 Numerical study of a two-component Bose-Einstein condensate in magnetic field |
指導教授: |
林文偉
Wen-Wei Lin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 31 |
中文關鍵詞: | 玻色-愛因斯坦凝聚現象 、薛丁格方程式 、離散化 |
外文關鍵詞: | Bose-Einstein condensate |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇文章中,主要研究的是量子物理中的玻色─愛因斯坦凝聚現象(堅稱為玻愛凝聚)在磁場中的作用,研究方法為數值模擬。玻愛凝聚現象是指在絕對零度時,所有氦原子都會凝聚到一個單一的最低能階(ground state)上。在文章的開頭,先介紹了玻愛凝聚現象以數學來表示即為著名的薛丁格方程式,它是描述電子在原子尺度上的運動方程式。而本文章只研究兩種不同原子在磁場中的作用結果為何,並分別以兩個薛丁格方程式來代表。在序言中,先開門見山的指明了此文章研究的方程式,並說明學者們在玻愛凝聚現象研究的成果有哪些,接著將本文章所研究帶有磁場的薛丁格方程式化簡後並做離散化,離散化的細節與程式碼的撰寫,在第二章中有詳細的介紹。在此文章用的數值方法為局部延續法(local continuation method),由兩部分組成,第一部份為預測(predictor)而第二部份為修正(corrector)。將局部延續法應用在離散化的薛丁格方程式後,主要問題就變成我們面臨了要解一個大型稀疏矩陣的線性系統。我們利用自然疊代法先找到ㄧ個當磁場為零時的ㄧ個解,並採用1993年所發表的fortran套裝程式BICGSTAB來解決在局部延續法出現的解現性系統的問題,最後,說明本文章的研究結果為何,並以圖表示之。
In this thesis, we use local continuation method to study a two-component Bose-Einstein condensate (BEC) in magnetic field numerically. First, we show the discretized process of a two-component BEC in magnetic field that is the
time-independent coupled nonlinear Schrodinger equation. Second, we present the algorithm and the numerical results.
[1] W.Z. Bao, it Ground states and dynamics of multi-component Bose-Einstein condensates, SIAM Multiscale Model. Simul. 2 (2) (2004), pp. 210-236.
[2] R. Mark Bradley, B. Deconinck and J. Nathan Kutz, Exact nonstationary solutions to the mean-field equations of motion for two-component Bose-Einstein condensate in periodic potentials, J. phys. A: Math. Gen. 38 (9) (2005), pp. 1901-1916.
[3] S.-M. Chang, W.-W. Lin, S.-F. Shieh, Gauss-Seidel-type methods for energy states of a multi-component Bose-Einstein condensate}, Computational Physics (2004).
[4] T.-L. Ho and V.B. Shenoy, Binary mixtures of Bose condensates of alkali atoms, Phys. Rev. Lett. 77 (1996), pp. 3276-3279.
[5] K. Kasamatsu and M. Tsubota, Multiple domain formation induced by modulation instability in two-component Bose-Einstein condensates, Phys. Rev. Lett. 93 (10) (2004) 100402.
[6] K. Kasamatsu, M. Tsubota and M. Ueda, Vortex molecules in coherently coupled two-component Bose-Einstein condensates, Phys. Rev. Lett. 93 (25) (2004) 250406.
[7] Y.-C. Kuo, W.-W. Lin and S.-F. Shieh, Bifurcation analysis of a two-component Bose-Einstein condensate, Physica D 211 (2005), pp. 311-346.
[8] H.-J. Miesner, D.M. Stamper-Kurn, J. Stenger,
S. Inouye, A. P. Chikkatur, W. Ketterle, Observation of meatstable states in spinor Bose-Einstein condensates, Phys. Rev. Lett. 82 (1999), pp. 2228-2231.
[9] M. A. Porter, P. G. Kevrekidisb and B. A. Malomed, Resonant and non-resonant modulated amplitude waves for binary Bose-Einstein condensate in optical lattices, Physica D 196 (2004), pp. 106-123.
[10] H. Pu and N. P. Bigelow, Collective excitations, metastability, and nonlinear response of a trapped two-species Bose-Einstein condensate, Phys. Rev. Lett. 80 (1998), pp. 1134-1137.
[11] Steven H. Strogatz, Nonlinear dynamics and Chaos : with
applications in physics, biology, chemistry, and engineering, Addison-Wesley, 1994.