研究生: |
陳正賢 Chen, Jheng-Sian |
---|---|
論文名稱: |
光學幫浦鉈原子6P3/2準穩態 Optical Pumping the Metastable State 6P3/2 of Atomic Thallium |
指導教授: |
劉怡維
Liu, Yi-Wei |
口試委員: |
施宙聰
Jow-Tsong Shy 周哲仲 Che-Chung Chou |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 43 |
中文關鍵詞: | 鉈 、原子束 、陰極中空放電管 、光學幫浦 、躍遷選擇規則 |
外文關鍵詞: | Thallium, Tl, atomic beam, hollow cathode discharge lamp, selection rule |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近代精準原子光譜實驗中,鉈原子(Thallium, Tl)在驗證宇稱不守恒原理中扮演一個重要的角色。本論文主旨為研究鉈原子束系統中準穩態(metastable
state)6P3/2與激發態(excited state)7S1/2間的躍遷,利用535nm雷射光源觀察原子被激發後所產生之雷射誘發螢光光譜;然而對鉈原子束系統中,在自然熱平衡分布下,由統計力學知主要原子數population皆集中在基態(ground state)6P1/2上,因此準穩態6P3/2上幾乎沒有原子,因此535nm螢光光譜的完成必須仰賴另一道377nm雷射光源的光學幫浦(optical pumping)效應,並利用躍遷選擇規則(selection rule)將原子從6P1/2能階經由lamda型能階系統轉移到特定的準穩態6P3/2超精細結構(hyperfine structure)能階上。本實驗利用755nm鈦藍寶石(Ti-Sapphire)雷射經倍頻共振腔產生377nm雷射作為光學幫浦效應之光源,同時利用1070nm摻銣釩酸釓晶體(Nd:GdVO4)雷射經摻氧化鎂週期反轉鈮酸鋰晶體(MgO doped periodicallypoled lithiumniobate, MgO:PPLN crystal)倍頻產生的535nm雷射作為螢光光譜的激發光源。利用377nm雷射作為選擇器激發某些超精細能階與同位素,本論文展示了原子束中每個躍遷的535nm解析光譜,也將其與陰極中空放電管中的無都普勒效應光譜作比較,上述結果可以用來作為未來鉈原子lamda型三能階雷射冷卻技術以及原子束與宇稱不守恒有關之高解析度1283nm M1躍遷光譜。
In modern precision atomic spectroscopy, thallium(Tl) plays an important role in testing Parity Nonconservation(PNC). The purpose of this thesis is to study transition between metastable state 6P3/2 and excited state 7S1/2 in atomic beam of Tl using 535nm laser to observe laser-induced fluorescence spectrum from metastable atom. As the thermal distribution of atomic beam, the most population is at ground state 6P1/2, due to the large ground state fine structure splitting. There is nearly no population at 6P3/2 metastable state. To accomplish 535nm spectrum, it is needed
optical pumping by 377nm laser to transfer atoms from 6P1/2 to specific energy level with the help of the selection rule. One of the light sources in the experiment is a 377nm laser which is frequency-doubled by a doubling cavity with 755nm Ti-Sapphire laser. The other is a 535nm laser which is also frequency-doubled by a MgO:PPLN with 1070nm Nd:GdVO4 laser. With the characteristics of exciting Tl atom to 7S1/2, 535nm laser can be an important light source of detecting if there is absorption resulting in weak E1-forbidden transition between 6P1/2 and 6P3/2. Using 377nm laser as a selector that optical pumped only some certain hyperfine levels and isotope, this thesis performs 535nm spectrum in atomic beam to clearly resolved all the transitions. We also compared these doppler-free spectrum with the hollow cathode discharge lamp (HCL). These results can be applied to the future experiments of lambda-type laser cooling of thallium and the high resolution atomic beam spectroscopy of the M1 transition of 1283nm for atomic parity violation measurement.
[1] T. D. Lee and C. N. Yang , “Question of Parity Conservation in Weak Interactions” Phys. Rev. 104, 254 (1956)
[2] C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson, “Experimental Test of Parity Conservation in Beta Decay” Phys. Rev. 105, 1413 (1957)
[3] M. A. Bouchiat and C. Bouchiat, “I. parity violation induced by weak neutral currents in atomic physic,” Phys. Lett. B48, 111 (1974).
[4] C. S. Wood, S. C. Bennett, D. Cho, B. P. Masterson, J. Roberts, C. E. Tanner, and C. E. Wieman, “Measurement of Parity Nonconservation and an Anapole Moment in Cesium.” Science 275, 1759 (1997).
[5] V. A. Dzuba, V. V. Flambaum, and J. S. M. Ginges, “High-precision calculation of parity nonconservation in cesium and test of the standard model” Phys. Rev. D 66, 076013 (2002).
[6] P. A. Vetter, D. M. Meekhof, P. K.Majumder, S. K. Lamoreaux, and E. N. Fortson, “Precise measurement of parity nonconserving optical rotation in atomic thallium,” Phys. Rev. Lett. 74, 2658 (1995).
[7] N. H. Edwards, S. J. Phipp, P. E. G. Baird, and S. Nakayama, “Precise measurement of parity nonconserving optical rotation in atomic thallium,” Phys. Rev. Lett. 74, 2654 (1995).
[8] Tzu-Ling Chen, Isaac Fan, Hsuan-Chen Chen, Chang-Yi Lin, Shih-En Chen, Jow-Tsong Shy, and Yi-Wei Liu, “Absolute frequency measurement of the 6P1/2→7S1/2 transition in thallium” Phys. Rev. A 86, 052524 – Published 29 November 2012
[9] Nang-Chian Shie, Chun-Yu Chang, Wen-Feng Hsieh, Yi-Wei Liu, and Jow-Tsong Shy, “Frequency measurement of the 6P3/2->7S1/2 transition of thallium” Phys. Rev. A 88, 062513(2013)
[10] 楊士模, “鉈原子在6P1/2到7S1/2的光譜量測” 國立清華大學物理系碩士論文, 2004
[11] T. Andersen and G. Sorensen, “Systematic Study of Atomic Lifetimes in Gallium, Indium, and Thallium Measured by the Beam-Foil Technique” Phys. Rev. A 5, 2447 (1972)
[12] W.Demtroder, Laser Spectroscopy : Vol.1: Basic Principles, 4th ed. (Springer, 2008)
[13] Christopher J. Foot, Atomic physics. (Oxford, 2005)
[14] D J McCarron, S A King and S L Cornish, “Modulation transfer spectroscopy in atomic rubidium” Meas. Sci. Technol. 19 (2008) 105601
[15] Hansch T W and Couillaud B, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35 441–4 (1980)
[16] 施能謙, “可調單頻Nd:GdVO4雷射及其光譜應用” 國立交通大學光電工程學系博士班論文, 2014
[17] 林長義, “利用中空陰極放電管研究鉈原子之光阻抗與飽和吸收光譜” 國立清華大學物理系碩士論文, 2012
[18] G. Hermann, G. Lasnitschka, and D. Spengler, “Hyperfine structures and level isotope shifts of the n2S1/2 (n=7-12)-and n2D3/2,5/2(n=6-10)-levels of 203,205Tl measured by atomic beam spectroscopy,” Z. Phys. D 28, 127 (1993).
[19] K.-J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency” Phys. Rev. Lett. 66, 2593 – Published 20 May 1991
[20] 陳姿伶, “鉈原子中Λ型三能階與光場的交互作用之研究”, 國立清華大學物理系碩士論文, 2008
[21] NIST Atomic Transition Probability tables.