簡易檢索 / 詳目顯示

研究生: 賴威成
Lai, Wei-Cheng.
論文名稱: 可電調變感測靈敏度與感測範圍之CMOS-MEMS觸覺感測器開發與實現
Electrically Modulable CMOS-MEMS Tactile Sensor with Various Sensitivities and Sensing Ranges
指導教授: 方維倫
Fang, Wei-Leun
口試委員: 范龍生
盧向成
程世偉
鄒慶福
林宗賢
李昇憲
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 116
中文關鍵詞: CMOS MEMS觸覺感測器可調變電調變電流變體
外文關鍵詞: CMOS MEMS, Tactile Sensor, Modulable, Electrically Modulable, ER-Fluid
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了因應多功能機器手臂,夾取不同物件之需求,觸覺感測器是機器手臂中關鍵之零組件,而面對不同的應用也會需要相對應之觸覺感測器規格,為此傳統方式需要透過修改光罩來改變元件之規格,或是在製程中事先透過調整某層材料之參數,來改變元件之特性。當元件製作完成後,可以透過放大電路等方式調整元件之輸出之靈敏度,但該方法往往無法調整元件之感測範圍。
    為了解決上述之問題,本研究希望可以設計出以電訊號來調變之觸覺感測元件。其元件之設計概念如下:在觸覺感測元件中,設計一個可填充不同材料的腔體,並以該腔體以及內部之填充材料作為元件之受力薄膜。並透過電場來調整填入觸覺感測元件之材料的等效剛性,進而調整感測元件之特性。在設計規畫上.使用微機電MEMS技術來減小施加電場所要提供的間距,將調變所需的輸入電壓從千伏特降至個位數伏特。本研究所提出之電調變觸覺感測器(Electrically Modulable Tactile Sensor (EMTS)),主要透過填入矽膠單體(Silicon Monomer)(矽油)、奈米顆粒(Nanoparticles)、矽膠固化劑(Curing Agent)的不同材料組成,來形成電流變體(ER-fluid)、PDMS(矽膠)介電高分子、PDMS高分子奈米複合材料,並以該材料作為填充材料,來形成三種可電調變之觸覺感測器(ER-fluid EMTS,PDMS EMTS,PDMS Nanoparticle Composite EMTS),並且透過上述這些不同的填充材料以及結構設計,來實現1. 兩階段感測能力,藉此延伸感測範圍;2. 使用中調變,使得元件可以在使用中透過施加之驅動電壓,進行特性調變;3. 製程中調變,在製程中透過施加不同電場,來調變元件之輸出特性。而本研究可含括的元件之靈敏度為3 fF/N~1.65 fF/mN,感測範圍為20 mN~2.5 N。其中調變靈敏度變化最大約為23倍,感測範圍可調變為原先之10%。


    The tactile sensor is a vital technology to the multi-functional robot. For fitting different grasping applications, the tactile sensors also require corresponding specifications for different objects. To change the sensor's specification, in traditional methods, the sensor needs to modify the mask to change the device's performance or adjust the fabrication parameters of the device's material in advance. After the device is manufactured, the sensitivity can be adjusted using an amplifying circuit, but this method cannot change the sensing range.
    For solving these problems, this study proposed electrically modulable tactile sensors (EMTS). The design concept is shown in the following: A force loading membrane, which has a material fill-in channel, was designed with different fill-in materials. Applied voltages can further modify the equivalent stiffness of fillers. Therefore, the sensitivity and sensing range can be modified. Besides, the CMOS-MEMS technology was be implemented to reduce the modulation voltage from kV to digital V by the sub-micro tiny gaps, thereby realizing an electrically adjustable device. In this study, three different materials are used as the modulation structure to realize the electrically modulable tactile senor: 1. Electrorheological fluid EMTS; 2. PDMS Polymer material EMTS; 3. Polymer nanoparticles composites (electrorheological elastomer) EMTS. Through these different filling materials and structural design, to achieve 1. Two-stage sensing capabilities, thereby extending the sensing range; 2. In-use modulation allows the device to modify the performance during use; 3. In-process modulation modulates the characteristics of the device during the process. The sensitivity that can be demonstrated in this study is 3 fF/N~1.65 fF/mN, and the sensing range is 20 mN~2.5 N. The maximum modulation in sensitivity is about 23 times, and the sensing range is reduced to 10%.

    目 錄 中文摘要 i Abstract ii 致謝 iii 目 錄 iv 圖目錄 vi 表目錄 x 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究動機 5 1-4 研究目標與架構 7 第二章 可調變觸覺感測器原理與分析 19 2-1 電容式觸覺感測器原理 19 2-2 可調變之觸覺感測器原理 21 2-3 可應用於電調變剛性之填充材料 22 2-4 小結 26 第三章 電流變體電調變觸覺感測器 36 3-1 元件設計概念 36 3-2 電流變體電調變觸覺感測器之後製程與封裝 39 3-3 觸覺感測器量測架設 41 3-4 電流變體電調變觸覺感測器量測結果分析與討論 43 3-5 小結 44 第四章 PDMS電調變觸覺感測器 56 4-1 元件設計概念 56 4-2 元件製程與結果 58 4-3 實驗結果分析與討論 59 4-4 小結 63 第五章 高分子奈米顆粒複合材料電調變觸覺感測器 76 5-1 元件設計概念 76 5-2 元件製程流程與結果 77 5-3 實驗結果分析與討論 79 5-4 小結 82 第六章 結論與未來展望 98 6-1 結論 98 6-2 未來展望 99 參考文獻 105 附錄A 觸覺感測器量測系統架設與驗證 114

    參考文獻
    [1] ITU, “ ITU Internet Reports 2005,” 2005
    [2] http://panasonic.co.jp/
    [3] http://nest.com/
    [4] http://www.fitbit.com/
    [5] http://jawbone.com/
    [6] http://www.adidas.com
    [7] http://www.iot-lab.ch/
    [8] http://www.ge.com/
    [9] https://www.kickstarter.com/
    [10] Hull Charles W, “Apparatus For Production Of Three-dimensional Objects By Stereolithography.” US Patent, 4575330A, 1986
    [11] https://www.kinovarobotics.com/
    [12] https://www.moley.com/
    [13] M. R. Motamedi, J. B. Chossat, J. P. Roberge, and V. Duchaine, “Haptic feedback for improved robotic arm control during simple grasp, slippage, and contact detection tasks,” Proc. - IEEE Int. Conf. Robot. Autom., vol. 2016-June, pp. 4894–4900, 2016.
    [14] J. P. Roberge, S. Rispal, T. Wong, and V. Duchaine, “Unsupervised feature learning for classifying dynamic tactile events using sparse coding,” Proc. - IEEE Int. Conf. Robot. Autom., vol. 2016-June, pp. 2675–2681, 2016.
    [15] http://www.pexels.com
    [16] http://www.tethers.com/
    [17] R. P. Hoyt, “SpiderFab: An Architecture for Self-Fabricating Space Systems,” in AIAA SPACE 2013 Conference and Exposition, 2013.
    [18] http://www.memscap.com/products/mumps/polymumps
    [19] https://www.mems.sandia.gov/tech-info/summit-v.html
    [20] Z. L. Zhang and N. C. MacDonald, “An RIE process for submicron, silicon electromechanical structures,” in TRANSDUCERS ’91: 1991 International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers, pp. 520–523.
    [21] K. A. Shaw, Z. L. Zhang, and N. C. MacDonald, “SCREAM I: A single mask, single-crystal silicon, reactive ion etching process for microelectromechanical structures,” Sensors Actuators A Phys., vol. 40, no. 1, pp. 63–70, Jan.1994.
    [22] https://www.teledynedalsa.com/corp/
    [23] M. Wu and W. Fang, “Design and fabrication of MEMS devices using the integration of MUMPs, trench-refilled molding, DRIE and bulk silicon etching processes,” J. Micromechanics Microengineering, vol. 15, no. 3, pp. 535–542, Mar.2005.
    [24] J. Verd et al., “Monolithic CMOS MEMS Oscillator Circuit for Sensing in the Attogram Range,” IEEE Electron Device Lett., vol. 29, no. 2, pp. 146–148, Feb.2008.
    [25] S. Eminoglu, D. S. Tezcan, M. Y. Tanrikulu, and T. Akin, “Low-cost uncooled infrared detectors in CMOS process,” Sensors Actuators A Phys., vol. 109, no. 1–2, pp. 102–113, Dec.2003.
    [26] C. Hagleitner, D. Lange, A. Hierlemann, O. Brand, and H. Baltes, “CMOS single-chip gas detection system comprising capacitive calorimetric, and mass-sensitive sensors,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1867–1878, Dec. 2002.
    [27] Ravi Balasubramanian et.al., The Human Hand as an Inspiration for Robot Hand Development, Springer, 2014.
    [28] T. Salo, K.-U. Kirstein, T. Vancura, and H. Baltes, “CMOS-Based Tactile Microsensor for Medical Instrumentation,” IEEE Sens. J., vol. 7, no. 2, pp. 258–265, Feb.2007.
    [29] J. Engel, J. Chen, and C. Liu, “Development of polyimide flexible tactile sensor skin,” J. Micromechanics Microengineering, vol. 13, no. 3, pp. 359–366, May2003.
    [30] M. Shikida, T. Shimizu, K. Sato, and K. Itoigawa, “Active tactile sensor for detecting contact force and hardness of an object,” Sens. Actuator A, Phys., vol. 103, pp. 213–218, 2003.
    [31] H.-K. Lee, S.-I. Chang, and E. Yoon, “A Flexible Polymer Tactile Sensor: Fabrication and Modular Expandability for Large Area Deployment,” J. Microelectromechanical Syst., vol. 15, no. 6, pp. 1681–1686, Dec.2006.
    [32] C. Liu, “Recent Developments in Polymer MEMS,” Advanced Materials, vol. 19, pp. 3783–3790, 2007.
    [33] http://electronics.howstuffworks.com/iphone1.htm
    [34] K. Motoo, Arai, F., and T. Fukuda, “Piezoelectric Vibration-Type Tactile Sensor Using Elasticity and Viscosity Change of Structure,” IEEE Sensors J., vol. 7, pp. 1044–1051, 2007.
    [35] C. Li, P-M. Wu, S. Lee, A. Gorton, M.J. Schulz, and C. H. Ahn,” Flexible Dome and Bump Shape Piezoelectric Tactile Sensors Using PVDF-TrFE Copolymer,” J. Microelectromechanical Syst., vol. 17, pp. 334–341, 2008.
    [36] J.-W. Lee, D.-J. Min, J. Kim, and W. Kim," A 600-dpi capacitive fingerprint sensor chip and image-synthesis technique,” IEEE J. Solid-State Circuits, vol. 34, pp. 469–475, 1999.
    [37] B. Charlot, F. Parrain, N. Galy, S. Basrour, and B. Courtois,” A sweeping mode integrated fingerprint sensor with 256 tactile microbeams,” J. Microelectromechanical Syst., vol. 13, pp. 636–644, 2004.
    [38] N. Sato et al., “Novel Surface Structure and Its Fabrication Process for MEMS Fingerprint Sensor,” IEEE Trans. Electron Devices, vol. 52, no. 5, pp. 1026–1032, May 2005.
    [39] C.-T. Ko, S.-H. Tseng, and M. S.-C. Lu, “A CMOS micromachined capacitive tactile sensor with high-frequency output,” J. Microelectromechanical Syst., vol. 15, no. 6, pp. 1708–1714, Dec. 2006.
    [40] T. Salo, T. Vančura, and H. Baltes, “CMOS-sealed membrane capacitors for medical tactile sensors,” J. Micromechanics Microengineering, vol. 16, no. 4, pp. 769–778, Apr. 2006.
    [41] H.-K. Lee, J. Chung, S.-I. Chang, and E. Yoon,” Normal and Shear Force Measurement Using a Flexible Polymer Tactile Sensor With Embedded Multiple Capacitors,” J. Microelectromechanical Syst., vol. 17, pp.934–942, 2008.
    [42] S. K. Yeh, J. H. Lee, and W. Fang, “On the detection interfaces for inductive type tactile sensors,” Sensors Actuators, A Phys., vol. 297, p. 111545, 2019.
    [43] A. Wisitsoraat, V. Patthanasetakul, T. Lomas, and A. Tuantranont, “Low cost thin film based piezoresistive MEMS tactile sensor,” Sensors Actuators A Phys., vol. 139, no. 1–2, pp. 17–22, Sep. 2007.
    [44] K. J. Chun and K. D. Wise, “A high-performance silicon tactile imaging based on a capacitive cell,” IEEE Trans. Electron Devices, vol. ED-32, no. 7, pp. 1196–1201, Jul. 1985.
    [45] Z. Chu, P. M. Sarro, and S. Middelhoek, “Silicon three-axial tactile sensor,” Sensors Actuators A Phys., vol. 54, no. 1–3, pp. 505–510, Jun. 1996.
    [46] H. Baltes, O. Brand, A. Hierlemann, D. Lange, and C. Hagleitner, “CMOS MEMS—Present and future,” in Proc. IEEE Int. Conf. Micro Electro Mech. Syst., Las Vegas, NV, Jan. 2002, pp. 459–466.
    [47] E. Pritchard, M. Mahfouz, B. Evans, III, S. Eliza, and M. Haider, “Flexible capacitive sensors for high resolution pressure measurement,” in Proc. IEEE Int. Conf. Sensors, Leece, Italy, Oct. 2008, pp. 1484–1487.
    [48] http://robotiq.com/
    [49] http://www.syntouchllc.com/
    [50] http://www.takktile.com/
    [51] http://touchence.jp/
    [52] K. Noda, K. Hoshino, K. Matsumoto, and I. Shimoyama, “A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material,” Sensors Actuators A Phys., vol. 127, no. 2, pp. 295–301, Mar. 2006.
    [53] H. Takahashi, A. Nakai, K. Matsumoto, and I. Shimoyama, “Shear force detector using piezo-resistive beams with sidewall-doping,” in 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), 2012, pp. 599–602.
    [54] C.-C. Wen and W. Fang, “Tuning the sensing range and sensitivity of three axes tactile sensors using the polymer composite membrane,” Sensors Actuators A Phys., vol. 145/146, pp. 14–22, Jul./Aug. 2008.
    [55] Y.-C. Liu, C.-M. Sun, L.-Y. Lin, M.-H. Tsai, and W. Fang,” Development of a CMOS-Based Capacitive Tactile Sensor With Adjustable Sensing Range and Sensitivity Using Polymer Fill-In,” J. Microelectromechanical Syst., vol. 20, no. 1, pp. 119–127, Feb. 2011.
    [56] Y.-T. Lai, Y.-M. Chen, T. Liu, and Y.-J. Yang,” A tactile sensing array with tunable sensing ranges using liquid crystal and carbon nanotubes composites,” Sensors Actuators A Phys., vol. 177, pp. 48–53, April. 2012.
    [57] K.-W. Liao, M. T. Hou, H. Fujita, and J. Andrew Yeh, “Liquid-based tactile sensing array with adjustable sensing range and sensitivity by using dielectric liquid,” Sensors Actuators A Phys., vol. 231, pp. 15–20, Jul. 2015.
    [58] E. Cross, R. Moshrefzadeh, A, Chernefsky, F. Bottari, C. Cordeiro, S. Schulz, and, M. Kardauskas, “Touch sensor,” US Patent, 20030234769A1, 2003
    [59] M. R. Cutkosky, “On grasp choice, grasp models, and the design of hands for manufacturing tasks,” IEEE Trans. Robot. Autom., vol. 5, no. 3, pp. 269–279, Jun.1989.
    [60] R. Balasubramanian and V. J. Santos, Eds., The Human Hand as an Inspiration for Robot Hand Development, vol. 95. Cham: Springer International Publishing, 2014.
    [61] https://www.quora.com/What-is-the-relevance-of-Hookes-law-and-Newtons-law-in-the-rheology-of-polymers
    [62] http://www.dc.engr.scu.edu/cmdoc/dg_doc/develop/process/physics/b3200001.htm
    [63] Y. K. Ahn, B.-S. Yang, and S. Morishita, “Directionally Controllable Squeeze Film Damper Using Electro-Rheological Fluid,” J. Vib. Acoust., vol. 124, no. 1, pp. 105–109, Jan. 2002.
    [64] S. Krause and K. Bohon, “Electromechanical Response of Electrorheological Fluids and Poly(dimethylsiloxane) Networks,” Macromolecules, vol. 34, no. 20, pp. 7179–7189, Sep. 2001.
    [65] Z. Wang, S. Xuan, W. Jiang, and X. Gong, “The normal stress of an electrorheological fluid in compression mode,” RSC Adv., vol. 7, no. 42, pp. 25855–25860, 2017.
    [66] https://www.youtube.com/watch?v=NOot5wxuxSg
    [67] M. Nakano, S. Minagawa, and K. Hagino,” PWM Flow Rate Control of ER Valve and its Application to ER Actuator Control,” Int. J. Modern Physics B, vol. 13, pp. 2168–2175, 1999.
    [68] J. E. Stangroom,” ELECTRORHEOLOGICAL FLUIDS,” Phys. Technal., vol. 14, pp. 290–296, 1983.
    [69] R. Tap, J. T. Woestman, and N.K. Jaggi," Electric field induced solidification," Appl. Phys Lett., vole. 55, pp. 1844–1846, Oct. 1989.
    [70] W. Wen, X. Huang, S. Yang, K. Lu, and P. Sheng," The giant electrorheological effect in suspensions of nanoparticles,” Nature Materials, vol. 2, pp. 727-730, Nov. 2003.
    [71] W. Wen, X. Huang, and P. Sheng,” Particle size scaling of the giant electrorheological effect,” Appl. Phys Lett., vole. 85, pp. 299-301, Jul. 2004.
    [72] W. Wen, X. Huang, S. Yang, and P. Sheng,” Mechanisms of the giant electrorheological effect,” Solid State Communications, vol. 139, pp. 518-588, June 2006.
    [73] Y.-Y. Ling, “Integrated microgiant electrorheological fluid valves for microflow cytometry,” J. Micro/Nanolithography, MEMS, MOEMS, vol. 8, no. 2, pp. 021103, Apr. 2009.
    [74] C. Keplinger, M. Kaltenbrunner, N. Arnold, and S. Bauer, “Rontgen’s electrode-free elastomer actuators without electromechanical pull-in instability,” Proc. Natl. Acad. Sci., vol. 107, no. 10, pp. 4505–4510, Mar. 2010.
    [75] R. E. Pelrine, R. D. Kornbluh, and J. P. Joseph, “Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation,” Sensors Actuators, A Phys., vol. 64, no. 1, pp. 77–85, 1998.
    [76] E. Sugawara and H. Nikaido, Electroactivity in Polymeric Materials, vol. 58, no. 12. Boston, MA: Springer US, 2012.
    [77] R. D. Kornbluh, R. Pelrine, H. Prahlad, and R. Heydt, “Electroactive polymers: an emerging technology for MEMS,” in MEMS/MOEMS Components and Their Applications, vol. 5344, no. Jan. 2004.
    [78] R. D. Kornbluh et al., “Electroelastomers: applications of dielectric elastomer transducers for actuation, generation, and smart structures,” in Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies, 2002, vol. 4698, no. July 2002, pp. 254–270.
    [79] N. Ni and L. Zhang, “Dielectric Elastomer Sensors,” in Elastomers, InTech, 2017.
    [80] J. Cheng, Z. Jia, and T. Li, “Dielectric-elastomer-based capacitive force sensing with tunable and enhanced sensitivity,” Extrem. Mech. Lett., vol. 21, pp. 49–56, 2018.
    [81] L. Rasmussen, Electroactivity in polymeric materials, Boston, MA, US: Springer, 2012, pp. 16–23.
    [82] X. Dong, C. Niu, and M. Qi, “Electrorheological Elastomers,” in Elastomers, no. tourism, InTech, 2017, pp. 13.
    [83] L. Jiang, A. Betts, D. Kennedy, and S. Jerrams, “Improving the electromechanical performance of dielectric elastomers using silicone rubber and dopamine coated barium titanate,” Mater. Des., vol. 85, pp. 733–742, 2015.
    [84] J. Bi, Y. Gu, Z. Zhang, S. Wang, M. Li, and Z. Zhang, “Core-shell SiC/SiO2 whisker reinforced polymer composite with high dielectric permittivity and low dielectric loss,” Mater. Des., vol. 89, pp. 933–940, 2016.
    [85] T. Shiga, A. Okada, and T. Kurauchi, “Electroviscoelastic Effect of Polymer Blends Consisting of Silicone Elastomer and Semiconducting Polymer Particles,” Macromolecules, vol. 26, no. 25, pp. 6958–6963, 1993.
    [86] P. Hiamtup, A. Sirivat, and A. M. Jamieson, “Electromechanical response of a soft and flexible actuator based on polyaniline particles embedded in a cross-linked poly(dimethyl siloxane) network,” Mater. Sci. Eng. C, vol. 28, no. 7, pp. 1044–1051, Aug. 2008.
    [87] X. Dong, C. Niu, and M. Qi, “Enhancement of electrorheological performance of electrorheological elastomers by improving TiO 2 particles/silicon rubber interface,” J. Mater. Chem. C, vol. 4, no. 28, pp. 6806–6815, 2016.
    [88] E4980A/AL Precision LCR Meter Users Guide
    [89] B. Erman and J. E. Mark, “The Molecular Basis of Rubberlike Elasticity,” in The Science and Technology of Rubber, Fourth Edi., Elsevier, 2013, pp. 167–168
    [90] P. Baglioni, “Soft Materials. Structure and Dynamics. By John R. Dutcher and Alejandro G. Marangoni.,” Angew. Chemie Int. Ed., vol. 45, no. 10, pp. 97, Feb. 2006.
    [91] A. N. Gent, “Rubber Elasticity: Basic Concepts and Behavior,” in The Science and Technology of Rubber, Fourth Edi., Elsevier, 2013, pp. 1–3.
    [92] P. Oswald, Rheophysics : the deformation and flow of matter. Cambridge University Press, 2009, pp. 33–36.
    [93] J. Ferguson and Z. Kemblowski, Applied Fluid Rheology. Springer Netherlands, 1991, pp. 38–40.
    [94] W. Noll, Chemistry and Technology of Silicones, Elsevier, 1968, pp. 392.
    [95] G. Koerner and J. Weise, Silicones: Chemistry and Technology, 1992, pp. 52.
    [96] H. Frölich, Theory of Dielectrics: Dielectric Constant and Dielectric Loss. Oxford University Press, 1987, pp. 1-9.
    [97] G. Raju, Dielectrics in Electric Fields, Second Edition. CRC Press, 2016, pp. 34–50.
    [98] T. Mitsumata and K. Sugitani, “Negative electrorheological effect of silicone gels containing barium titanate,” Macromol. Rapid Commun., vol. 25, no. 8, pp. 848–852, 2004.
    [99] T. Mitsumata, K. Sugitani, and K. Koyama, “Electrorheological response of swollen silicone gels containing barium titanate,” Polymer (Guildf)., vol. 45, no. 11, pp. 3811–3817, 2004.
    [100] Y.Gun Ko and U. Su Choi, “Negative electrorheological fluids,” J. Rheol. (N. Y. N. Y)., vol. 57, no. 6, pp. 1655–1667, Nov.2013.

    無法下載圖示 全文公開日期 2023/12/28 (校內網路)
    全文公開日期 2025/12/27 (校外網路)

    QR CODE