研究生: |
戴良光 Tai, Liang-Kuang |
---|---|
論文名稱: |
基於價格調整找尋最獲利產品 Finding the Most Profitable Product(s) Based on Price Settings |
指導教授: |
陳良弼
Chen, Arbee L.P. |
口試委員: |
韓永楷
Hon, Wing-Kai 沈之涯 Shen, Chih-Ya 柯佳伶 Koh, Jia-Ling 李官陵 Lee, Guan-Ling 范耀中 Fan, Yao-Chung |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 103 |
中文關鍵詞: | 動態天際線 、並行計算 、客戶行為 、價格設定 、利潤最大化 |
外文關鍵詞: | Dynamic Skyline, Parallel Processing, Customer Behaviors, Price setting, Profit maximization |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
公司要生存在競爭市場中,知道公司的哪些產品可以獲得最大的利潤並推出市場是很重要的。為了達到這個目的,公司不僅需要考慮產品的特性,還需要分析客戶如何做出購買決定。對於大多數客戶來說,產品的價格是最重要的購買因素之一。產品的價格產生變動,客戶的購買決定可能會改變。因此,本論文利用候選產品與市場上已經存在的產品競爭決定候選產品是否具有影響力,也就是能吸引顧客購買的能力。若是候選產品的產品屬性不具影響力,則向下調候選產品的定價,使得候選產品因為低價因素而具有影響力。依循常理來說,產品的影響力應該由市佔率來決定,也就是產品能夠滿足的客戶量來決定,因為客戶是市場供需中的需求方,所以越多客戶喜歡的產品,產品的影響力越高。不過,在競爭市場上,產品有高市佔率不一定就能達到高獲利。因此,如何透過價格的調整找尋一個或一組能獲取最大利潤的產品是研究重點。在本論文中,我們分別研究如何選擇一個與一組的能獲取最高利潤產品。
在考量選擇一個最高利潤產品時,我們利用動態天際線來決定產品是否滿足客戶需求,也就是若產品成為客戶需求的動態天際線則視作產品滿足客戶需求。候選產品需要調整價格時,都要與所有現有產品進行競爭,以確定它是否可以成為某些客戶偏好的動態天際線產品之一。由於計算動態天際線的成本高,我們透過平行計算加速處理。為了平行計算,我們使用基於voronoi-diagram的劃分方法將現有產品集和客戶偏好集分成多個小資料集合。對於小資料集合,可以生成大量的組合。為了進一步提高性能,我們設計了兩種有效的削減策略來避免計算所有的組合,發展出一個可有效率找出最佳獲利產品的方法。
在選擇一組最佳獲利產品時,我們透過客戶需求與產品屬性之間的距離,決定產品是否滿足客戶需求。由於滿足客戶需求的產品可能很多,我們利用距離長短決定客戶最有可能選擇購買的產品。而候選產品需要調整價格時,除了考量所有現有產品進行競爭之外,還要考量候選產品之間的競爭。在此研究中,我們提出了兩種策略。一種是避免處理候選產品的所有可能子集,另一種是避免考慮所有可能的價格設置。實驗結果表明了該策略的有效性。
針對這兩個研究,我們皆設計一系列的實驗,以人造模擬資料及真實資料來驗證我們所提出的演算法的有效性及執行效率。
For a company, knowing which products can obtain the maximum profits is a critical issue. To achieve this goal, companies not only need to consider products’ features but also need to analyze how customers make their purchase decisions. For most customers, the price of the product is one of the most important purchase factors. The price of the product may change, and the customer's purchase decision may change. In this dissertation, we utilize the competition among candidate products and existing products to determine whether a candidate product has influence, that is the ability to attract customers to purchase. If the product attributes of the candidate product are not influential, we can lower the price of the candidate product and make it influential. In general, the influence of a product should be determined by its market share, which is the number of potential customers. However, a high market share of a product may not lead to high profitability. In this dissertation, we concentrate on finding the candidate product(s) with maximum profit through price adjustment. We formulate two problems, one is finding the most profitable candidate product by dynamic skyline, and the other is selecting the most profitable products by distance-based adoption model.
In the first problem, the dynamic skyline of a customer's preference identifies the products that the customer may purchase. Each time the price of a candidate product is adjusted, it needs to compete with all of the existing products to determine whether it can be one of the dynamic skyline products of some customer preferences. To compute in parallel, we use a Voronoi-Diagram-based partitioning method to separate the set of existing products and that of customer preferences into cells. For these cells, a large number of combinations can be generated. For each price under consideration of a candidate product, we process all the combinations in parallel to determine whether this candidate product can be one of the dynamic skyline products of the customer preferences. We then integrate the results to decide the price for each candidate product to achieve the most profit. To further improve the performance, we design two efficient pruning strategies to avoid computing all combinations.
In the second problem, we determine whether a product satisfies a customer based on the distance between the customer's preference and the attributes of the product. Since there may be many products that can satisfy a customer, we use the maximum distance to determine which products a customer is most likely to purchase. When a candidate product is adjusted its price, we not only consider all existing products for competition but also the competition among candidate products. To tackle this problem, we propose two strategies. One is to avoid processing all possible subsets of the candidate products, and the other is to avoid considering all possible price settings.
Furthermore, for both studies, a series of experiments on synthetic datasets and real datasets are performed to show the effectiveness and execution efficiency of our proposed algorithms.
[AK12] Foto N. Afrati, Paraschos Koutris, Dan Suciu, and Jeffrey D. Ullman. (2012). Parallel skyline queries. In Proceedings of the 15th International Conference on Database Theory (ICDT), 274-284. DOI: 10.1145/2274576.2274605.
[BK01] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. (2001). The Skyline operator. In Proceedings of the 17th International Conference on Data Engineering (ICDE), 421-430. DOI: 10.1109/ICDE.2001.914855.
[CC18] Yuh-Jen Chen, Yuh-Min Chen, Yu-Jen Hsu, Jyun-Han Wu. (2018). Predicting Consumers' Decision-Making Styles by Analyzing Digital Footprints on Facebook. International Journal of Information Technology and Decision Making, 601-627. DOI:10.1142/S0219622019500019.
[CG05] Jan Chomicki, Parke Godfrey, Jarek Gryz, and Dongming Liang. (2005). Skyline with Presorting: Theory and Optimizations. In Proceedings of the International IIS: Intelligent Information Processing and Web Mining (IIPWM) Conference, 595-604. DOI:10.1007/3-540-32392-9_72.
[CS15] Sean Chester, Darius Sidlauskas, Ira Assent, and Kenneth S. Bpgh. (2015). Scalable Parallelization of Skyline Computation for Multi-core Processors. In Proceedings of the International Conference on Data Engineering, 1083-1094. DOI: 10.1109/ICDE.2015.7113358.
[CT14] Wan-Yu Chiu, Gwo-Hshiung Tzeng, and Han-Lin Li. (2014). Developing e-store marketing strategies to satisfy customers' needs using a new hybrid gray relational model. International Journal of Information Technology and Decision Making, 13(2): 231-262. DOI: 10.1142/S0219622014500357.
[DP11] Prasad M. Deshpande and Deepak P. (2011). Efficient reverse skyline retrieval with arbitrary non-metric similarity measures. In Proceedings of the 14th International Conference on Extending Database Technology (EDBT), 319-330. DOI: 10.1145/1951365.1951404.
[DS07] Evangelos Dellis and Bernhard Seeger. (2007). Efficient computation of reverse skyline queries. In Proceedings of the 33rd international conference on Very large data bases Conference (VLDB), 291-302. DOI: 10.5555/1325851.1325887.
[FN16] Umar Farooq, Antoine Nongaillard, Yacine Ouzrout, and Muhammad Abdul Qadir. (2016). A Feature-Based Reputation Model for Product Evaluation. International Journal of Information Technology and Decision Making, 15(6): 1521-1554. DOI: 10.1142/S0219622016500358.
[FW18] Yaping Fu, Hongfeng Wang, Guangdong Tian, Zhiwu Li, and Hesuan Hu. (2018). Two agent stochastic flow shop deteriorating scheduling via a hybrid multiobjective evolutionary algorithm. Journal of Intelligent Manufacturing, 30(5): 2257-2272. DOI: 10.1007/s10845-017-1385-4.
[IL16] Md. Saiful Islam and Chengfei Liu. (2016). Know your customer: computing k-most promising products for targeted marketing. The VLDB Journal, 25(4): 545-570. DOI: 10.1007/s00778-016-0428-3.
[IP12] Hyeonseung Im and Sungwoo Park. (2012). Group skyline computation. Information Sciences, 188: 151-169. DOI: 10.1016/j.ins.2011.11.014.
[JW15] Ruei Sian Jheng, En Tzu Wang, and Arbee L. P. Chen. (2015). Determining Top-K Candidates by Reverse Constrained Skyline Queries. In Proceedings of the 4th International Conference on Data Management Technologies and Applications (DATA), 101-110. DOI: 10.5220/0005498601010110.
[KL14] Jia-Ling Koh, Chen-Yi Lin, and Arbee L. P. Chen. (2014). Finding k most favorite products based on reverse top-t queries. The VLDB Journal, 23(4): 541-564. DOI: 10.1007/s00778-013-0336-8.
[KR02] Donald Kossmann, Frank Ramsak, and Steffen Rost. (2002). Shooting stars in the sky: An online algorithm for skyline queries. In Proceedings of the Very Large Data Bases Conference (VLDB), 275-286. DOI: 10.5555/1287369.1287394.
[KX21] Gang Kou, Hui Xiao, Minhao Cao, and Loo Hay Lee. (2021). Optimal computing budget allocation for the vector evaluated genetic algorithm in multi-objective simulation optimization. Automatica, 129: 109599. DOI: 10.1016/j.automatica.2021.109599.
[KY20] Gang Kou, Pei Yang, Yi Peng, Feng Xiao, Yang Chen, and Fawaz E. Alsaadi. (2020). Evaluation of feature selection methods for text classification with small datasets using multiple criteria decision-making methods. Applied Soft Computing, 86(C). DOI: 10.1016/j.asoc.2019.105836.
[LC08] Xiang Lian and Lei Chen. (2008). Monochromatic and bichromatic reverse skyline search over uncertain databases. In Proceedings of the 2008 ACM SIGMOD international conference on Management of data (SIGMOD), 213-226. DOI: 10.1145/1376616.1376641.
[LH14] Jongwuk Lee and Seung-won Hwang. (2014). Scalable skyline computation using a balanced pivot selection technique. Information Systems, 39: 1-21. DOI: 10.1016/j.is.2013.05.005.
[LK13] Chen-Yi Lin, Jia-Ling Koh, and Arbee L.P. Chen. (2013). Determining (k)-most demanding products with maximum expected number of total customers. IEEE Transactions on Knowledge and Data Engineering (TKDE), 25(8): 1732-1747. DOI:10.1109/TKDE.2012.53.
[LO06] Cuiping Li, Beng Chin Ooi, Anthony K.H. Tung, and Shan Wang. (2006). DADA: a data cube for dominant relationship analysis. In Proceedings of the 25th ACM SIGMOD International Conference on Management of Data, 659-670. DOI: 10.1145/1142473.1142547.
[LS12] Wei Lu, Yanyan Shen, Su Chen, and Beng Chin Ooi. (2012). Efficient processing of k nearest neighbor joins using MapReduce. VLDB Endowment, 5(10): 1016-1027. DOI: 10.14778/2336664.2336674.
[LX15] Jinfei Liu, Li Xiong, Jian Pei, Jun Luo, and Haoyu Zhang. (2015). Finding pareto optimal groups: Group-based skyline. VLDB Endowment. 8(13): 2086-2097. DOI: 10.14778/2831360.2831363.
[LX19] Jinfei Liu, Li Xiong, Jian Pei, Jun Luo, Haoyu Zhang, and Wenhui Yu. (2019) Finding pareto optimal groups: Group-based skyline. IEEE Transactions on Knowledge and Data Engineering, 33(7): 2914-2929. DOI: 10.1109/TKDE.2019.2960347.
[MP14] Kasper Mullesgaard, Jens Laurits Pederseny, Hua Lu, and Yongluan Zhou. (2014). Efficient Skyline Computation in MapReduce. In Proceedings of 17th International Conference on Extending Database Technology (EDBT), 37-48. DOI: 10.5441/002/edbt.2014.05.
[MS16] Vikash Mishra and Vikram Singh. (2016). Vector Evaluated Genetic Algorithm-based distributed query plan generation in distributed database. In Proceedings of the International Conference on Recent Cognizance in Wireless Communication & Image Processing. DOI: 10.1007/978-81-322-2638-3_37.
[PJ07] Jian Pei, Bin Jiang, Xuemin Lin, and Yidong Yuan. (2007). Probabilistic skylines on uncertain data. In Proceedings of the 33rd international conference on Very large data bases (VLDB), 15-26. DOI: 10.5555/1325851.1325858.
[PM13] Yoonjae Park, Jun-Ki Min, and Kyuseok Shim. (2013). Parallel computation of skyline and reverse skyline queries using MapReduce. VLDB Endowment, 6(14): 2002-2013. DOI: 10.14778/2556549.2556580.
[PT03] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. (2003). An optimal and progressive algorithm for skyline queries. In Proceedings of the 2003 ACM SIGMOD international conference on Management of data, 467-478. DOI: 10.1145/872757.872814.
[PT05] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. (2005). Progressive skyline computation in database systems. ACM Transactions on Database Systems (TODS), 30(1): 41-82. DOI: 10.1145/1061318.1061320.
[PW12] Yu Peng, Raymond Chi-Wing Wong, and Qian Wan. (2012). Finding Top-k Preferable Products. IEEE Transactions on Knowledge and Data Engineering (TKDE), 24(10): 1774-1788. DOI: 10.1109/TKDE.2012.52.
[PW13] Yu Peng and Raymond Chi-Wing Wong. (2013). Finding competitive price. In Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL), 144-153. DOI: 10.1145/2525314.2525337.
[SB08] Dimitris Sacharidis, Panagiotis Bouros, and Timos Sellis. (2008). Caching dynamic skyline queries. In Proceedings of the 20th International Conference on Scientific and Statistical Database Management (SSDBM), 455-472. DOI: 10.1007/978-3-540-69497-7_29.
[TE01] Kian-Lee Tan, Pin-Kwang Eng, and Beng Chin Ooi. (2001). Efficient Progressive Skyline Computation. In Proceedings of the 27th International Conference on Very Large Data Bases Conference (VLDB), 301-310. DOI: 10.5555/645927.672217.
[TW21] Liang Kuang Tai, En Tzu Wang, Arbee L. P. Chen. (2021). Finding the most profitable candidate product by dynamic skyline and parallel processing. Distributed and Parallel Databases, 39: 979-1008. DOI: 10.1007/s10619-021-07323-4.
[VD08] Akrivi Vlachou, Christos Doulkeridis, and Yannis Kotidis. (2008). Angle-based space partitioning for efficient parallel skyline computation. In Proceedings of the 2008 ACM SIGMOD international conference on Management of data, 227-238. DOI: 10.1145/1376616.1376642.
[WN23] Ronghui Wang, Guofang Nan, Gang Kou, Minqiang Li. (2023). Separation or integration: The game between retailers with online and offline channels. European Journal of Operational Research, 307(3): 1348-1359. DOI: 10.1016/j.ejor.2022.09.037.
[WT09] Xiaobing Wu, Yufei Tao, Raymong Chi-Wing Wong, Ling Ding, and Jeffrey Xu Yu. (2009). Finding the influence set through skylines. In Proceedings of the 12th International Conference on Extending Database Technology: Advances in Database Technology (EDBT), 1030-1041. DOI: 10.1145/1516360.1516478.
[WW09] Qian Wan, Raymond Chi-Wing Wong, Ihab F. Ilyas, M. Tamer Özsu, and Yu Peng. (2009). Creating competitive products. VLDB Endowment. 2(1): 898-909. DOI: 10.14778/1687627.1687729.
[WW11] Wen-Chi Wang, En Tzu Wang, and Arbee L. P. Chen. (2011). Dynamic skylines considering range queries. In Proceedings of the 16th international conference on Database systems for advanced applications: Part II (DASFAA), 235-250. DOI: 10.1007/978-3-642-20152-3_18.
[XL14] Silei Xu and John C.S. Lui. (2014). Product Selection Problem: Improve Market Share by Learning Consumer Behavior. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD), 851-860. DOI: 10.1145/2623330.2623692.
[XL16] Silei Xu and John C. S. Lui. (2016). Product selection problem: improve market share by learning consumer behavior. ACM Transactions on Knowledge Discovery from Data 10(4): 1-25. DOI: 10.1145/2753764.
[XL17] Guoqing Xiao, Kenli Li, and Keqin Li. (2017). Reporting l most influential objects in uncertain databases based on probabilistic reverse top-k queries. Information Sciences. 405: 207-226. DOI: 10.1016/j.ins.2017.04.028.
[YG18] Bo Yin, Ke Gu, Xuetao Wei, Siwang Zhou, and Yonghe Liu . (2018) A cost-efficient framework for finding prospective customers based on reverse skyline queries. Knowledge-Based Systems. 152: 117-135. DOI: 10.1016/j.knosys.2018.04.011.
[YL18] Zhibang Yang, Kenli Li, Xu Zhou, Jing Mei, and Yunjun Gao. (2018). Top k probabilistic skyline queries on uncertain data. Neurocomputing. 317: 1-14. DOI: 10.1016/j.neucom.2018.03.052.
[YW19a] Bo Yin, Xuetao Wei, and Yonghe Liu. (2019). Finding the most influential product under distribution constraints through dominance tests. Applied Intelligence, 49: 723-740. DOI: 10.1007/s10489-018-1293-0.
[YW19b] Bo Yin, Xuetao Wei, and Yonghe Liu. (2019). Finding the informative and concise set through approximate skyline queries. Expert Systems With Applications, 119: 289-310. DOI: 10.1016/j.eswa.2018.11.004.
[YZ16] Jianye Yang, Ying Zhang, Wenjie Zhang, and Xuemin Lin. (2016). Influence based Cost Optimization on User Preference. In Proceedings of the 32nd International Conference on Data Engineering (ICDE), 709-720. DOI: 10.1109/ICDE.2016.7498283.
[YZ19] Jianye Yang, Ying Zhang, Wenjie Zhang, and Xuemin Lin. (2019). Cost optimization based on influence and user preference. Knowledge and Information Systems, 61: 695-732. DOI: 10.1007/s10115-018-1290-y.
[ZF12] Wenqiang Zhang and Shigeru Fujimura. (2012). Multi-objective process planning and scheduling using improved vector evaluated genetic algorithm with archive. IEEE Transactions on Electrical & Electronic Engineering, 7(3): 258-267. DOI: 10.1002/tee.21726.
[ZL16] Xu Zhou, Kenli Li, Guoqing Xiao, Yantao Zhou, and Keqin Li. (2016). Top k favorite probabilistic products queries. IEEE Transactions on Knowledge and Data Engineering (TKDE), 28(10): 2808-2821. DOI: 10.1109/TKDE.2016.2584606.
[ZL19] Xu Zhou, Kenli Li, Zhibang Yang, and Keqin Li. (2019). Finding Optimal Skyline Product Combinations under Price Promotion. IEEE Transactions on Knowledge and Data Engineering (TKDE), 31(1): 138-151. DOI: 10.1109/TKDE.2018.2823707.
[ZM09] Shiming Zhang, Nikos Mamoulis, and David W. Cheung. (2009). Scalable skyline computation using object-based space partitioning. In Proceedings of the 2009 ACM SIGMOD international conference on Management of data, 483-494. DOI:10.1145/1559845.1559897.
[ZZ11] Boliang Zhang, Shuigeng Zhou, and Jihong Guan. (2011). Adapting skyline computation to the MapReduce framework: algorithms and experiments. In Proceedings of the 16th international conference on Database systems for advanced applications (DASFAA), 403-414. DOI: 10.1007/978-3-642-20244-5_39.