簡易檢索 / 詳目顯示

研究生: 蔡博安
Bo-an Tsai
論文名稱: 具有區域性應變及不同晶向基底之高介電閘極P型場效電晶體之電特性研究
Electric Property of High-k Gated PMOSFET with Local Strained and Different Orientation Substrates
指導教授: 張廖貴術
Kuei-Shu Chang-Liao
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 114
中文關鍵詞: 區域性應變不同晶向基底P型場效電晶體
外文關鍵詞: High-k, PMOSFET, Local Strained, Orientation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了改善MOSFET電晶體的性能,元件的尺寸被要求越來越小,在未來的CMOS技術中等效氧化層厚度 (EOT) 甚至被要求縮小到1.0nm以下。然而,當二氧化矽縮小到1.5nm以下時穿隧電流變得相當顯著,導致有很大的閘極漏電流發生。High-k介電層可用來減少這個漏電流發生,因為較厚的介電層可以減少電子或電洞穿越閘極介電層的可能,使得穿隧電流可以被減少。
    第一部份我們在High-k/Si之間加入一緩衝層為用水平爐管所成長二氧化矽,退火溫度為PMA 950oC與PMA 750oC,在高溫PMA 950oC下,因densification使得EOT下降至2.2 nm,且SILC較小,推測為高溫下,interface的defects可獲得修補。此二條件,其漏電流都為1E-8 (A/cm²)左右。然而,在高溫下爐管所成長二氧化矽厚度變得難以控制,所以使得EOT無法下降至2 nm以下,故我們先將化學氧化層當閘極介電層,而成長化學氧化層的溶液有:HNO3、HCl +H2O2+H2O、H2SO4+ H2O2,發現以HNO3溶液成長化學氧化層,EOT可降至0.9 nm,且從遲滯曲線幾乎重疊與漏電流較小可知,代表具有很好的介電層品質。接下來,我們將HNO3溶液成長化學氧化層經由spike annealing處理後搭配ALD機台沉積HfAlO,結果經spike annealing後,漏電流在閘極電壓為零時,可降至1E-9(A/cm² )左右,但在V-Vfb=-1V時,Jg變大,而可靠度SILC也可獲得明顯改善
    第二部份我們利用了介電層為化學氧化層搭配ALD所疊高介電係數材料HfAlO,閘極為多晶矽,加上區域性應變SiN厚度為3000 □來製作電晶體,探討區域性應變在不同晶向基底上對元件的影響,結果轉導最大值在(110)晶向基底增加率為最大,有21.8%,且載子在高電場下,載子移動率較不受影響,但在晶向基底為(110)與(111)經區域性應變後對臨界電壓與轉導漂移較大。
    第三部份介電層為二氧化矽,閘極為多晶矽,加上區域性應變SiN厚度為3000 □來製作電晶體,在不同晶向基底上,我們發現,經區域性應變後,在最大轉導值、汲極電流、載子移動率,有較好的表現,尤其以在晶向(110)表現為最佳。


    第一章 序言 1.1 二氧化矽在未來世代製程之限制 1.2 高介電常數材料之選擇 1.3 不同晶向對載子之影響 1.4 張力應變對矽之電子特性的影響 1.5 研究ALD機台所疊介電層之動機 第二章 元件製程與量測 2.1 化學氧化層搭配ALD機台所疊<HfAlO>且閘極為<TaN>之MOSCAP元件製程 2.1.1 晶片刻號 2.1.2 歐姆式接觸( Ohmic Contact ) 2.1.3 化學氧化層生長與HfAlO閘介電層沉積2.1.4 金屬電極沉積 2.2 化學氧化層搭配ALD所疊HfAlO之MOSFET元件製程 2.2.1 晶片刻號及零層(Alignment Mark)曝光 2.2.2 定義主動區(Active Region) 2.2.3 閘介電層(Gate Dielectric)的成長及退火處理 2.2.4 多晶矽金屬閘電極的形成 2.2.5 源極(Source)、汲極(Drain)、基極(Base)的形成 2.2.6 形成接觸窗(Contact Hole)、接出金屬導線、燒結 2.3 電性量測2.3.1 金氧半電容的量測 2.3.2 金氧半電晶體的量測 第三章 HNO3溶液成長之化學氧化層當High-k/Si界面緩衝層對金氧半元件特性之研究 3.1 研究動機 3.2 製程與量測 3.2.1 TaSiN/HfAlO/SiO2/Si結構的電容之元件製程條件 3.2.2 TaN/HfAlO/Chemical oxide/Si結構的電容之元件製程條件 3.2.3 量測參數 3.3 實驗結果與討論 3.3.1 TaSiN/HfAlO/SiO2/Si結構的電容在不同PMA溫度下電性和可靠 度上之影響 3.3.2 化學氧化層對TaN/Chemical oxide/Si結構的電容電性之影響3.3.3 化學氧化層經不同spike退火處理後對TaN/HfAlO/Chemical oxide/Si結構的電容電性和可靠度之影響 3.4 結論 第四章 介電層為化學氧化層搭配ALD所疊高介電係數材料HfAlO覆蓋不同厚度之區域性應變在不同基底上P通道電晶體特性之研究 4.1 研究動機 4.2 製程與量測 4.2.1 製程條件 4.2.2 量測參數 4.3 實驗結果與討論 4.3.1 化學氧化層搭配ALD所疊高介電係數材料HfAlO在區域性應變下 在不同晶相對PMOSFET元件之初始特性的影響 4.3.2 化學氧化層搭配ALD所疊高介電係數材料HfAlO在區域性應變下在不同晶向對PMOSFET元件之可靠度的影響 4.4 結論 第五章 不同厚度之區域性應變在不同晶向基底上P通道電晶體特性之研究 5.1 研究動機 5.2 製程與量測 5.2.1 製程條件 5.2.2 量測參數 5.3 實驗結果與討論 5.3.1 區域性應變下在不同晶向下對PMOSFET元件之初始特性的影響 5.3.2 區域性應變下在不同晶向對PMOSFET元件之可靠度的影響 5.3.3 介電層為化學氧化層搭配ALD所疊HfAlO與二氧化矽之區域性應 變在不同基底上PMOSFET特性之比較 5.4 結論 第六章 結論 6.1 結論

    [1]IBM J. RES. & DEV by H. –S. P. Wong
    [2]S. M. Sze, “Physics of Semiconductor Devices”, Second printing July,
    p.469-486.
    [3]Yuan Taur, et al., First published 1998, Reprinted, p.161, 187, 1999.
    [4]Buchanan, et al.,Microelectron. Eng.,Vol 36, pp.13-20,1997
    [5]H. S. Momose, et al.,IEEE Trans. Electron Devices, vol. 43, pp.1233, Aug.1996
    [6]Thompson et al.,IEDM, p.61,2002
    [7]Bai et al.., IEDM, p.657, 2004
    [8]G. D. Wilk, et al., Journal of Applied Physics, vol.89, pp.5243-5275,
    2001
    [9]T. H. Hou, et al., Meeting of the Electrochemical Society, Salt Lake
    City, Utah, 2002
    [10]J. H. Lee, et al., Symp. on VLSI Technology Digest, pp.188-189 ,
    11-13 June , 2002
    [11]K. Kakushima, et al.,IEEE, pp.161-166, 19-21 Dec., 2005
    [12]Nihar R. Mohapatra, et al., IEEE Transactions on Electron Devices, Vol 49, pp.826-831,NO. 5, MAY 2002
    [13]J.W.Yang, et al., Appl.Phys.Lett.Vol 76, p.273,2000
    [14]A.Osinsky, et al., Appl.Phys.Lett.Vol 72, p551,1998
    [15]Min Yang, Evgeni P, et al.,IEEE Electron Device Lett., vol. 24, pp.
    339–341, May 2003
    [16]B. M. Haugerud, et al.,J.Appl.Phys..,Vol.94, p.6, 15 September 2003
    [17]S.C.Song et al., IEEE Symp.on VLSI Technology Tech.Dig.,
    pp.137-138.1999
    [18]W.J.Zhu et al., IEEE Electron Device Letters, Vol.25, NO.2,
    pp.89-91, 2004
    [19]S.i.Takagi et al., IEEE Trans.Electron Devices, Vol.41, NO.12,
    pp.2357-2362, 1994
    [20]R. Woltjer, et al., IEEE Trans. Electron Devices, Vol 42, pp.109-115, 1995
    [21]S. J. Lee, et al., VLSI Symp. Tech. Dig., p.133, 2001
    [22]T. Iwamoto, et al., IEDM Tech Dig., p.639, 2003
    [23] K. Yamamoto, et al., Appl. Phys. Lett. pp.2053-5, Vol 81,2002
    [24] C. L. Cheng, et al., Appl. Phys. Lett. Vol 86, pp.212902-3, 2005
    [25]C. S. Kang, et al., IEEE Transactions on Electron Devices, Vol 51, pp.220-7, 2004
    [26]X. Wang, et al., IEEE Transactions on Electron Devices, Vol 51, pp.1798-4, 2004
    [27]B. Djezzar, Symp. Nuclear Science, pp.234-9, 2001
    [28]D. M. Fleetwood, IEEE Transactions on Nuclear Science,Vol 43, pp.779-6, 1996
    [29]X. Yu, et al., IEEE Electron Device Lett. Vol 25, pp.501-3,2004
    [30]S. Mudanai, et al., IEEE Electron Device Lett. ,Vol 23, pp.728-0, 2002
    [31]D. K. Schroder, “Semiconductor material and device characterization,” John wiley & Sons, pp.337-8,1998
    [32]P. O. Hahn, et al., J. Vac. Sci. Technol. A ,Vol 2, pp. 574-3, 1984
    [33]T. Yamanka, et al., IEEE Electron Device Lett. ,Vol 17, pp178-0, 1996
    [34]W. K. Chim, et al., J. Appl. Phys. , Vol 93, pp.4788-3, 2003
    [35]Heyns, et al., VLSI Technology, Systems, and Applications, International Symposium, p.247,2003
    [36]J.F. Conley, et al., Electrochem. and Sol. State Lett., pp.108-112, 2002
    [37]G.D. Wilk, et al., Symposium On VLSI Technology Digest of Technical, p.88, 2002
    [38]H. Fujioka, et al., “QMCV simulator,” online available http://www-device.eecs.berkeley.edu/qmcv/index.shtml
    [39]J. F. Kang, et al., IEEE Electron Device Lett. , Vol 26, pp.237-9, 2005
    [40]J. F. Conley, et al., Appl. Phys. Lett. , Vol 84,pp.1913-5, 2004
    [41]C. K. Chiang, et al., Appl. Phys. Lett. ,Vol 76, pp.430-2, 2000
    [42]J. Maserjian, et al., J. Vac. Sci. & Technol. ,Vol 20, pp.743-6, 1982
    [43]R. Rofan, et al., IEEE Electron Device Lett. , Vol 12, pp.632-4, 1991
    [44]Jiann-Liang Su , et al., American Institute of Physics , Vol 91 , p.8 , 2002
    [45]K. Ota, et. al., in IEDM Tech. Dig., p.358, 2002
    [46]K. Ota, et. al., in IEDM Tech. Dig., p.27, 2002
    [47]D. C. Houghton, Vol 12, pp.439-441, 1991
    [48]“Mobility enhancement”IEEE CIRCUITS &DEVICES
    MAGAZINE, p18-23,September/October 2005
    [49]S.E. Thompson, et al., IEEE ElectronDevice Lett., vol. 25, pp. 191–193, Apr. 2004
    [50]T. Ghani, et al., in Tech. Dig. IEEE Int. Electron Devices Meeting, pp. 11.6.1–11.6.3, 2003
    [51]M.D. Giles, et al., in Proc. Symp. VLSI Technology., p.118, 2004
    [52]Chia-Yu Lu ,et al., RELPHY. pp.727-728, 2006
    [53]Yao-Jen Lee, et al.,in IPFA, pp.88 - 91, July 2006
    [54]Tsung Yi Lu, et al., in EDL, Vol 26, pp.267-269, 2005
    [55]Chen. P. S., et al.in SMTW, pp.79-82, 2004
    [56]Su, P, et al.in EDL, Vol 28, pp.649-651,July 2007
    [57]張新君,“金氧半元件金屬閘極和高介電係數介電層之製程整合研究”,國立清華大學工程與系統科學系,2006

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE