簡易檢索 / 詳目顯示

研究生: 張永德
Chang, Yung-Te
論文名稱: 一個使用單極性零交錯偵測之十二位元連續近似輔助管線式類比數位轉換器
A 12-bit zero-crossing-based pipelined-SAR ADC with single-polarity transfer
指導教授: 謝志成
Hsieh, Chih-Cheng
口試委員: 李泰成
Lee, Tai-Cheng
張順志
Chang, Soon-Jyh
洪浩喬
Hong, Hao-Chiao
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 英文
論文頁數: 84
中文關鍵詞: 零交錯偵測連續近似輔助管線式類比數位轉換器類比數位轉換器
外文關鍵詞: zero-crossing-based, pipelined-SAR, ADC
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個使用單極性傳遞之連續近似輔助零交錯偵測管線式(zero-crossing based pipelined-SAR)十二位元類比數位轉換器(ADC)。
    為達到高速度的取樣頻率並維持良好功率消耗表現,本論文所提出之類比數位轉換器以管線式操作,並使用了單極性傳遞之零交錯偵測取代傳統的乘積式數位類比轉換器(Mutiplying digital-to-analog converter, MDAC)。提出的單極性傳遞之零交錯偵測可以有效地降低管線式類比數位轉換器中的MDAC的功率消耗,在單極性傳遞的操作下可以改善傳統雙端(differential)傳遞所造成的訊號偏移,進而提高能源效率和類比數位轉換器的線性度。
    為驗證本電路,此架構使用90奈米1P9M互補式金氧半導體製程製作,核心電路面積為159×245μm2,在1伏特電源電壓及40百萬赫茲取樣頻率操作下,此晶片在低頻率訊號輸入時實現之SNDR為為56.9dB,其對應的ENOB為9.2bit,功率消耗為430微瓦,等效的figure of merit (FoM)為18.3fJ/conversion-step。


    This thesis presents a 12-bit zero-crossing-based pipelined-SAR (successive-approximation register) analog-to-digital converter with single-polarity transfer.
    The proposed ADC operates on pipelined mode and uses single-polarity transfer zero-crossing detection instead conventional multiplying digital-to-analog converter to achieve a higher operation speed and save power. The proposed single-polarity transfer zero-crossing detection can improve the power consumption from MDAC in pipelined ADC effectively and the error sources from the differential mode, which can save more power and increase linearity of the ADC.
    The prototype was fabricated in 90nm 1P9M CMOS technology with a core area of 159×245μm2. At 1 supply voltage and 40MS/s sampling rate, the ADC achieves SNDR from 56.9dB corresponding ENOB from 9.2 bit at low frequency input and consumes 430uW power, resulting in a figure of merit (FoM) from 18.3 fj/coversion-step.

    Abstract iii Content iv List of Figures viii List of Tables xii Chapter 1 Introduction 1 1.1 Architecture Selection 2 1.2 Performance Metrics of SAR ADC 4 1.2.1 Nyquist Criterion 4 1.2.2 Resolution 4 1.2.3 Quantization Error 5 1.2.4 Offset and Gain Error 6 1.2.5 Differential Nonlinearity 6 1.2.6 Integral Nonlinearity 7 1.2.7 Signal-to-Noise Ratio 7 1.2.8 Signal-to-Noise and Distortion Ratio 8 1.2.9 Spurious-Free Dynamic Range 8 1.2.10 Effective number of bits 8 1.2.11 Figure of Merit 9 1.3 Target Specifications 9 Chapter 2 Successive Approximation Register ADC Overview 11 2.1 Introduction 11 2.2 Operation Procedure of Conventional SAR ADC 12 2.3 Considerations of Sample and Hold 13 2.3.1 Charge Injection 14 2.3.2 Clock feedthrough 15 2.3.3 KTC Noise 15 2.3.4 Sampling Speed 16 2.4 Considerations of Capacitive DAC 17 2.4.1 DAC Parasitic Capacitance 18 2.4.2 DAC Capacitor Mismatch 19 2.4.3 Settling Time 20 2.5 Considerations of Comparator 21 2.5.1 Input Offset 22 2.5.2 Kickback Noise 23 2.6 SAR Control Logic 24 2.7 Summary 25 Chapter 3 Pipelined ADC Overview 27 3.1 Introduction 27 3.2 Operation Procedure of Pipelined ADC 28 3.3 Redundancy Bit 29 3.4 Considerations of Sub-ADC 30 3.5 Considerations of Multiplying DAC (MDAC) 31 3.5.1 Opamp DC Gain Requirements 33 3.5.2 Opamp Bandwidth Requirements 34 3.6 Digital Error Correction Logic 34 3.7 Summary 36 Chapter 4 Circuit Design Considerations 37 4.1 Differential ADC 37 4.2 Stage Resolution Distribution in Pipelined-SAR 38 4.2.1 Timing distribution 39 4.2.2 Opamp DC Gain Requirements 40 4.2.3 Opamp Bandwidth Requirements 40 4.3 Sample and Hold 42 4.4 CDAC Switching Energy 43 4.5 Comparator 46 4.6 Zero-Crossing-Based Circuits 46 4.6.1 Overshoot from Time-Delay 48 4.6.2 Fully Differential ZCBC 49 4.6.3 Proposed ZCBC with Single-Polarity Transfer 52 4.7 Summary 55 Chapter 5 Circuit Implementation of Pipelined-SAR ADC 56 5.1 Architecture of Proposed Pipelined-SAR ADC 56 5.2 Design of Sample and Hold 58 5.3 Design of Capacitive DAC 59 5.4 Design of Comparator 60 5.5 Design of Foreground Calibration 61 5.6 Design of ZCBC with Single Polarity Transfer 63 5.6.1 Design of Zero-Crossing Detector(ZCD) 64 5.6.2 Design of Current Source 67 5.7 Pre-Layout and Post-Layout Simulations 68 5.8 Summary 69 Chapter 6 Measurement Results 70 6.1 Measurement Environment Setup 70 6.2 Chip Micrograph 71 6.3 Static Performance 72 6.4 Dynamic performance 73 6.5 Performance Discussion 74 6.6 Performance Summary and Comparison 78 Chapter 7 Conclusion and Future Work 81 7.1 Conclusion 81 7.2 Future Work 81 Bibliography 82

    [1] L. Frenzel. (2017, Mar 09). High-Speed RF Sampling ADC Boosts Bandwidth, Dynamic Range [Online]. Available: http://www.electronicdesign.com/adc/high-speed-rf-sampling-adc-boosts-bandwidth-dynamic-range
    [2] C.-C. Liu, "A 10-bit 320-MS/s Low-Cost SAR ADC for IEEE 802.11ac Applications in 20-nm CMOS, " in IEEE Asian Solid-State Circuits Conf. (A-SSCC), 2014, pp. 77-80.
    [3] B. Murmann. (2017, Jul. 12). ADC Performance Survey 1997-2017 [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html.
    [4] T. C. Carusone, D. A. Johns, and K. W. Martin, Analog Integrated Circuit Design, 2nd ed.: WILEY, 2012.
    [5] R. J. Baker, CMOS: Circuit Design, Layout, and Simulation, 3rd ed.: WILEY, 2010
    [6] R. H. Walden, "Analog-to-digital converter survey and analysis," in IEEE Journal on Selected Areas in Communications, vol. 17, no. 4, pp. 539-550, Apr 1999.
    [7] R. Wang et. al., "A 12-bit 110MS/s 4-stage Single-Opamp Pipelined SAR ADC with Ratio-Based GEC Technique, " in European Solid-State Circuits Conference (ESSCIRC), pp. 265-268, Sep. 2012.
    [8] J. Kuppambatti and P. R. Kinget, "A Low Power Zero-Crossing Pipeline-SAR ADC with On-Chip Dynamically Loaded Pre-Charged Reference, " in European Solid-State Circuits Conference (ESSCIRC), pp. 113-116, Sep. 2013.
    [9] Y. Lim and M. P. Flynn, "A 100MS/s, 10.5Bit, 2.46mW Comparator-Less Pipeline ADC Using Self-Biased Ring Amplifiers, " in IEEE Journal of Solid-State Circuits, vol. 50, no. 10, pp. 2331-2341, Oct. 2015.
    [10] Y. Lim and M. P. Flynn, "A 1mW 71.5dB SNDR 50 MS/s 13 bit Fully Differential Ring Amplifier Based SAR-Assisted Pipeline ADC, " in IEEE Journal of Solid-State Circuits, vol. 50, no. 12, pp. 2901-2911, Dec. 2015.
    [11] C. C. Lee, C.-Y. Lu, R. Narayanaswamy and J. B. Rizk, "A 12b 70MS/s SAR ADC with Digital Startup Calibration in 14nm CMOS, " in IEEE Symp. VLSI Circuits, pp. 62-63, June 2015.
    [12] B. Razavi, Design of Analog CMOS Integrated Circuits, 1st ed.: McGraw-Hill 2002.
    [13] M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. Klumperink and B. Nauta, "A 1.9μW 4.4fJ/Conversion-step 10b 1MS/s Charge-Redistribution ADC,"in IEEE ISSCC Dig. Tech. Papers, pp. 244-610, Feb. 2008.
    [14] P. M. Figueiredo and J. C. Vital, "Kickback noise reduction techniques for CMOS latched comparators," in IEEE Trans. Circuits and Systems II, Express Briefs, vol. 53, pp. 541-545, Jul. 2006.
    [15] C. C. Liu, S. J. Chang, G. Y. Huang and Y. Z. Lin, "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure," in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, April 2010.
    [16] L. Sun, C.-T. Ko, K.-P. Pun, "Optimizing the Stage Resolution in Pipelined SAR ADCs for High-Speed High-Resolution Applications, " in IEEE Trans. Circuits Syst. II: Express Brilfs, vol. 61, no. 7, pp. 476-480, July 2014.
    [17] Y. Zhu, C.-H. Chan, U.-F. Chio, S.-W. Sin, S.-P. U, R. P. Martins, and F. Maloberti, "A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS," in IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1111-1121, Jun. 2010.
    [18] J. K. Fiorenze, T. Sepke, P. Holloway, C. G. Sodini, H.-S. Lee, "Comparator-Based Switched-Capacitor Circuits for Scaled CMOS Technologies," in IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2658-2668, Dec. 2006.
    [19] L. Brooks, H.-S. Lee, "A Zero-Crossing-Based 8-bit 200MS/s pipelined ADC," in IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2677-2687, Dec. 2007.
    [20] S.-K. Shin et. al., "A Fully-Differential Zero-Crossing-Based 1.2V 10b 26MS/s Pipelined ADC in 65nm CMOS, " in IEEE Symp. VLSI Circuits, pp. 218-219, June 2008.
    [21] L. Brooks, H.-S. Lee, "A 12b, 50MS/s, Fully Differential Zero-Crossing-Based ADC," in IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3329-3343, Dec. 2009.
    [22] S. Lee, A. P. Chandrakasan, H.-S. Lee, "A 12 b 5-to-50 MS/s 0.5-to-1 V Voltage Scalable Zero-Crossing Based Pipelined ADC, " in IEEE J. Solid-State Circuits, vol. 47, no. 7, pp. 1603-1614, July 2012.
    [23] D.-Y. Chang et. al., "A 21mW 15b 48MS/s Zero-Crossing Pipeline ADC in 0.13um CMOS with 74dB SNDR, " in IEEE ISSCC Dig. Tech. Papers, pp. 204-205, Feb. 2014.
    [24] S.-K. Shin et. al., "A 12 bit 200 MS/s Zero-Crossing-Based Pipelined ADC With Early Sub-ADC Decision and Output Residue Background Calibration, " in IEEE J. Solid-State Circuits, vol. 49, no. 6, pp. 1366-1382, Jun. 2014.
    [25] S. E. Hsieh and C. C. Hsieh, "A 0.3-V 0.705-fJ/Conversion-Step 10-bit SAR ADC With Shifted Monotinic Switching Procedure in 90-nm CMOS, " in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 12, pp. 1171-1175, Dec. 2016

    QR CODE