研究生: |
蔡英杰 Tsai, Ying-Chieh |
---|---|
論文名稱: |
高壓橫向絕緣閘極雙載子電晶體之設計及應用 Design and Application of a High Voltage Lateral Insulated Gate Bipolar Transistor |
指導教授: |
連振炘
Lien, Chen-Hsin 龔正 Gong, Jeng |
口試委員: |
金雅琴
King, Ya-Chin 黃智方 Huang, Chih-Fang 陳新 Chen, Hsin 劉怡君 Liu, Yi-Chun 謝光宇 Hsieh, Kuang-Yeu 林吉聰 Lin, Jyi-Tsong 施君興 Shih, Chun-Hsing |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 114 |
中文關鍵詞: | 橫向絕緣閘雙載子電晶體 、接面絕緣技術 、高電壓 |
外文關鍵詞: | Lateral Insulated-Gate Bipolar Transistor (LIGBT), Junction Isolation Technology, High Voltage |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著高壓製程的進步,功率積體電路的應用越來越廣,對於功率元件的需求也與日俱增。絕緣閘雙載子電晶體(Insulated Gate Bipolar Transistor,IGBT)是具有高電流、低導通阻抗與高崩潰電壓的最佳候選之一。然而IGBT與積體電路一起整合在晶片內需要橫向(Lateral)的元件結構,這面臨的主要問題,如寄生雙載子電晶體導通造成嚴重的基板電流,使積體電路操作會有閂鎖(latch-up)的風險。在抑制基板電流的設計方面,我們利用接面絕緣技術(Junction Isolation,JI)取代矽覆絕緣技術(Silicon-on-Insulator,SOI)的元件架構來降低成本以及避免SOI散熱不好的問題。因此,我們利用0.5μm高壓製程技術與一次磊晶(Epitaxy)的技術,提出一個新型的接面絕緣型橫向絕緣閘雙載子電晶體(Junction Isolation Lateral IGBT,JI-LIGBT)架構,藉由掩埋層結構(Buried Layer,BL)來抑制基板電流。我們成功的設計出崩潰電壓200V與700V的JI-LIGBT,在元件相同崩潰電壓條件下,設計結合準垂直擴散金氧半場效應電晶體(Quasi-Vertical Diffused Metal-Oxide-Semiconductor Field Effect Transistor,QVDMOSFET)來提高飽和電流,使元件導通電流與基板電流有最佳化的設計。
為了使應用範圍更加廣泛,設計一個200V應用的接面絕緣技術之N型橫向絕緣閘雙載子金氧半電晶體,本論文製作具有一部分N型掩埋層與多通道結構,以加強抑制基板電流。這個摻雜濃度較高的N型掩埋層被設計在元件陽極的下端,量測結果證明此結構可以有較低的基板電流且具有大於160V的操作電壓應用。
由於功率積體電路常常操作在嚴苛的環境。在高溫情況下改善元件的穩定特性是必要的,我們設計NPN陽極的架構在本體矽之接面絕緣技術橫向絕緣閘雙載子金氧半電晶體,比較三種元件結構在不同溫度情況下元件關斷狀態的漏電流密度分佈。本論文提出的架構改善了關斷狀態的漏電流。此外,設計P型頂環延伸至NPN陽極的架構,不僅改善崩潰電壓至大於900V,更可以減少基板電流以確保在高溫的穩定性。
Based on the progress of the high voltage process, power integrated circuit has more and more widely applications. The demand for power components is also increasing. Insulated-gate bipolar transistor (IGBT) is one of the best candidates for a high current, low on-resistance and high breakdown voltage application. However, to integrate the IGBT with other low-voltage control circuits requires a lateral architecture, an LIGBT, within the silicon wafer. However, the conduction of the LIGBT parasitic bipolar transistor may cause a serious substrate current. So that such an integrated circuit will face the risk of latch-up effect. In order to suppress the substrate current without using the high cost and heat dissipation troubled silicon-on-insulator (SOI) technology, a junction isolation technology (JI) design is proposed and verified in this dissertation that uses a 0.5μm high voltage process technology and an epitaxy technology. A junction isolation lateral IGBT (JI-LIGBT) is proposed to suppress the substrate current with breakdown voltage greater than 700V. In addition, the quasi-vertical double diffusion metal-oxide-semiconductor field effect transistor (QVDMOSFET) is included to improve the saturation current.
In order to make the application more extensive, we designed a 200V JI-LIGBT with an N-type buried layer (BL) and multi-channel structure to more suppress the substrate current. Measurement results show that this structure has a lower substrate current and its operating voltage is higher than 160V.
Since power integrated circuits are often operated in harsh environments. The high temperature DC characteristics of a high-voltage bulk Si lateral insulated-gate bipolar transistor in junction isolation (JI-LIGBT) technology is studied intensively in this dissertation. The current density distribution in the off-state at different temperatures of three types of device structure is compared. By using the Quasi-vertical DMOSFET (QVDMOS or multi-channel, MC) structure, the electron injection from the channel into the n-drift region is significantly enhanced, and the current density is improved. In addition, by extending the p-top layer to the NPN anode not only improves the breakdown voltage but also reduces the substrate current as well as ensures high temperature stability.
[1] Kentaro Hara, Sho Wada, Junichi Sakano, Tetsuya Oda, Kimio Sakurai, Hiromasa Yamashita, and Tomoyuki Utsumi, “600V single chip inverter IC with new SOI technology,” in Proc. 26th ISPSD, Jun. 2014, pp. 418–421.
[2] Koichi Endo, Yoshiro baba, Yuso Udo, Mitsuru Yasui and Yoshiy Sano, “A 500V 1A 1-Chip Inverter IC with a New Electric Field Reduction Structure,” in Proc. 6th ISPSD, May 1994, pp. 379–383.
[3] Mehrdad Ramezani and C. Andre T. Salama, “A Monolithic IGBT Gate Driver Implemented in a Conventional 0.8μm BiCMOS process,” in Proc. 10th ISPSD, Jun. 1998, pp. 109–112.
[4] Taizo Yamane, Sadao Ikeda and Akio Nakagawa, “Three-phase sinusoidal current PWM Brushless Motor Driver ICs,” in Proc. 16th ISPSD, May 2004, pp. 147–150.
[5] N. Sakurai, M. Mori and T. Yatsuo, “High Speed, High Current Capacity LIGBT and Diode for Output Stage for High voltage Monolithic Three-phase Inverter IC,” in Proc. 2nd ISPSD, April 1990, pp. 66–71.
[6] K. Sakurai, D. Maeda and H. Hasegawa, “Three-Input Type Single-Chip Inverter IC including a Function to Generate Six Signals and Dead Time,” in Proc. 20th ISPSD, May 2008, pp. 323–326.
[7] Nakagawa A, Funaki Hideyuki, Yamaguchi Yoshihiro and Suzuki Fumito, “Improvement in lateral IGBT design for 500V 3A one chip inverter ICs,” in Proc. 11th ISPSD, May 1999, pp. 321–324.
[8] Satoshi. Shiraki, Shigeki Takahashi, Akira Yamada, Mashiro Yamamoto, Koji Senda, Youichi Ashida, Atsuyuki Hiruma, and Norihito Tokura, “High Voltage and High Reliability Silicon-on-Insulator Power IC Technologies and Their Application to 750V 4.5A Micro-Inverter IC,” in Proc. SSDM, 2011, pp. 1373–1374.
[9] Shohei Yamamoto, Eco Solutions Company, Panasonic Corporation, “How power electronics will Reshape to meet the 21st century challenges?” in Proc. 27th ISPSD, May 2015, pp. 17–20.
[10] Gangyao Wang, Alex Q. Huang, Fei Wang, Xiaoqing Song, Xijun Ni, Sei-Hyung Ryu, David Grider, Marcelo Schupbach, John Palmour, “Static and Dynamic Performance Characterization and Comparison of 15kV SiC MOSFET and 15kV SiC n-IGBTs,” in Proc. 27th ISPSD, May 2015, pp. 229–232.
[11] J. A. Cooper, Jr and A Agarwal, “SiC power-switching devices-The second electronics revolution?” in Proc. IEEE, vol. 90, no. 6, Jun. 2002, pp. 956–968.
[12] Kuan-Wei Chu, Wen-Shan Lee, Chi-Yin Cheng, Chih-Fang Huang, Feng Zhao, Lurng-Shehng Lee, Young-Shying Chen, Chwan-Ying Lee, and Min-Jinn Tsai, ”Demonstration of Lateral IGBTs in 4H-SiC,” IEEE Electron Device Letter, vol. 34, no. 2, 2013, pp. 286–288.
[13] Nando Kaminski, and Oliver Hilt, “SiC and GaN devices – wide band gap is not all the same,” in IET Circuits Devices & Syst., January 2014, Vol. 8, Iss. 3, pp. 227-236.
[14] S. L. Selvaraj, A. Watanabe, A. Wakejima, and T. Egawa, “1.4-kV breakdown voltage for AlGaN/GaN high-electron mobility transistors on silicon substrate,” IEEE Electron Device Letter, vol. 33, no. 10, 2012, pp. 1375–1377.
[15] M. Van Hove et al., “CMOS process-compatible high-power low-leakage AlGaN/GaN MISHEMT on silicon,” IEEE Electron Device Letter, vol. 33, no. 5, 2012, pp. 667–669.
[16] E. Bahat-Treidel et al., “Fast-switching GaN-based lateral power Schottky barrier diodes with low onset voltage and strong reverse blocking,” IEEE Electron Device Letter, vol. 33, no. 3, 2012, pp. 357–359.
[17] S. Lenci et al., “Au-free AlGaN/GaN power diode on 8-in Si substrate with gated edge termination,” IEEE Electron Device Letter, vol. 34, no. 8, 2013, pp. 1035–1037.
[18] J. Hu et al., “Current transient spectroscopy for trapping analysis on Au-free AlGaN/GaN Schottky barrier diode,” Appl. Phys. Lett., vol. 106, no. 8, 2015, pp. 083502.
[19] M. Zhu et al., “1.9-Kv AlGaN/GaN lateral Schottky barrier diodes on silicon,” IEEE Electron Device Letter., vol. 36, no. 4, 2015, pp. 375–377.
[20] D. Christy et al., “Uniform growth of AlGaN/GaN high electron mobility transistors on 200 mm silicon (111) substrate,” Appl. Phys. Exp., vol. 6, no. 2, 2013, pp. 026501.
[21] B. De Jaeger et al., “Au-free CMOS-compatible AlGaN/GaN HEMT processing on 200mm Si substrates,” in Proc. 24th ISPSD, Jun. 2012, pp. 49–52.
[22] M. Rodriguez, Y. Zhang, and D. Maksimovic, “High-frequency PWM buck converters using GaN-on-SiC HEMTs,” IEEE Trans. Power Electron., vol. 29, no. 5, May 2014, pp. 2462–2473.
[23] Y.-P. Hong, K. Mukai, H. Gheidi, S. Shinjo, and P. Asbeck, “High efficiency GaN switching converter IC with bootstrap driver for envelope tracking applications,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., 2013, pp. 353–356.
[24] S. Shinjo, Y.-P. Hong, H. Gheidi, D. Kimball, and P. Asbeck, “High speed, high analog bandwidth buck converter using GaN HEMTs for envelope tracking power amplifier applications,” in Proc. IEEE Wireless Sens. and Sens. Netw., 2013, pp. 13–15.
[25] EPC. (2015) Integrated GaN power: Increase efficiency and power density. [Online]. Available:
http://epcco.com/epc/Products/eGaNFETs/EnhancementModeMonolithicHalf-Bridge.aspx.
[26] Texas Instruments. (2015) LMG5200 80V GaN half bridge power stage. [Online]. Available: http://www.ti.com/product/lmg5200
[27] C.-Y. Chang, T. Anderson, J. Hite, L. Lu, C.-F. Lo, B.-H. Chu, D. J. Cheney, E. A. Douglas, B. P. Gila, F. Ren, G. D. Via, P. Whiting, R. Holzworth, K. S. Jones, S. Jang, and S. J. Pearton, “Reverse gate bias induced degradation of AlGaN/GaN high electron modility transistors,” J. Vac. Sci. Technol. B, vol. 28, no. 5, 2010, pp. 1044–1047.
[28] E. A. Preble, J. H. Leach, R. Metzger, E. Shishkin, and K. A. Udwary, “2'-4' diameter GaN-on sapphire substrates free of wafer bow at all temperatures,” Phys. Status Solidi C, vol. 11, Apr. 2014, pp. 604–607.
[29] M. A. Khan, J. W. Yang, W. Knap, E. Frayssinet, X. Hu, G. Simin, P. Prystawko, M. Leszczynski, I. Grzegory, S. Porowski, R. Gaska, M. S. Shur, B. Beaumont, M. Teisseire, and G. Neu, “GaN-AlGaN heterostructure field-effect transistors over bulk GaN substrates,” Appl. Phys. Lett., vol. 76, no. 25, 2000, pp. 3807.
[30] D. Ehrentraut, R. T. Pakalapati, D. S. Kamber, W. Jiang, D. W. Pocius, B. C. Downey, M. McLaurin, and M. P. D’Evelyn, “High quality, low cost ammonothermal bulk GaN substrates,” Jpn. J. Appl. Phys., vol. 52, no. 8S, 2013, pp. 08JA01.
[31] R. Dwilinski, R. Doradzinski, J. Garczynski, L. P. Sierzputowski, A. puchalski, Y. Kanbara, K. Yagi, H. Minakuchi, and H. Hayashi, “Excellent crystallinity of truly bulk ammonothermal GaN,” J. Crsystal Growth, vol. 310, no. 17, 2008, pp. 3911–3916.
[32] P. Kruszewski, P. Prystawko, I. Kasalynas, A. Nowakowska-Siwinska, M. Krysko, J. Plesiewicz, J. Smalc-Koziorowska, R. Dwilinski, M. Zajac, R. Kucharski, and M. Leszczynski, “AlGaN/GaN HEMT structures on ammono bulk GaN substrate,” Semicond. Sci. Technol., vol. 29, no. 7, 2014, pp. 075004.
[33] B. J. Baliga, “Power Semiconductor Devices,” Massachusetts: PWS, 1996.
[34] Vinod Kumar Khanna, “Insulated Gate Bipolar Transistor (IGBT): Theory and Design” IEEE Press,Wiley-Interscience.
[35] S. Takahashi, A. Akio, Y. Youichi, S. Satoshi, and N. Norihito, “Carrier-Storage Effect and Extraction-Enhanced Lateral IGBT (E2LIGBT): A Super-High Speed and Low On-state Voltage LIGBT Superior to LDMOS,” in Proc. 24th ISPSD, June 2012, pp. 393–396.
[36] Jing Zhu, Long Zhang, Weifeng Sun, Yicheng Du, Keqin Huang, Meng Chen, Longxing Shi, Yan Gu, and Sen Zhang, “Further Study of the U-shaped Channel SOI-LIGBT with Enhanced Current Density for High-Voltage Monolithic ICs,” IEEE Trans. Electron Devices, vol. 63, no. 3, 2016, pp. 1161–1167.
[37] Wilson W.T. Chan, Johnny K.O. Sin, and S. Simon Wong, “An effective Cross-Talk Isolation Structure for Power IC Applications,” in IEDM Tech. Dig., 1995, pp. 971–947.
[38] D. N. Pattanayak, A. Robinson, T.P. Chow, M. S. Adler, B. J. Baliga, and E. J. Wildi, “N-channel lateral insulated gate transistors: Part ISteady-state characteristics,” IEEE Trans. Electron Devices, vol. 33, no. 12, 1986, pp. 1956–1963.
[39] S. Hardikar, D. Green, and E. Narayanan, ‘Transient substrate currents in junction-isolated lateral IGBT,” IEEE Trans. Electron Devices, vol. 53, no. 6, 2006, pp. 1487–1490.
[40] T. Chow, D. Pattanayak, B. Baliga, M. Adler, W. Hennesy, and C. Logan, “Interaction between monolithic, junction-isolated lateral insulated-gate bipolar transistors,” IEEE Trans. Electron Devices, vol. 38, no. 2, 1991, pp. 310–315.
[41] A. Huang and G. Amaratunga, “The influence of an LIGBT on CMOS latch up in power integrated circuit,” IEEE Trans. Electron Devices, vol. 42, no. 10, 1995, pp. 1873–1874.
[42] Benoit Bakeroot, Jan Doutreloigne, Piet Vanmeerbeek, and Peter Moens, “Analysis of a Narrow-Base Lateral IGBT with Double Buried Layer for Junction-Isolated Smart-Power Technologies,” IEEE Trans. Electron Devices, vol. 55, no.1, 2008, pp.435–445 2008.
[43] B. Bakeroot, J. Doutreloigne, P. Vnmeerbeek, and P. Moens, “A New Lateral-IGBT Structure with a Wider Safe Operating Area,” IEEE Electron Device Letter, vol. 28, no. 5, 2007, pp.416–418.
[44] N. Fujishima, M. Saito, A. Kitamura, Y. Urano, G. Tada and Y. Tsuruta, “A 700V Lateral Power MOSFET with Narrow Gap Double Metal Field Plates Realizing Low On-resistance and long-term Stability of Performance,” in Proc.13th ISPSD, June 2001, pp. 255–258.
[45] R.Y. Su, C.C. Cheng, K.H. Huo, F.J. Yang, J.L. Tsai, R.S. Liou, and H.C. Tuan, “Design of 700V LIGBT with the suppressed Substrate Current in a 0.5um Junction Isolated Technology,” in Proc. 24th ISPSD, July 2012, pp. 221–224.
[46] Wilson W. T. Chan, Johnny K. O. Sin, and S. Simon Wong, “An Effective Cross-Talk Isolation Structure for Power IC Applications,” in IEDM Tech. Dig., Dec. 1995, pp. 971–974.
[47] Mikio Tsujiuchi, Tetsuya Nitta, Takashi Ipposhi, Shigeto Maegaea. “Evolution of 200V Lateral-IGBT Technology,” in Proc. 26th ISPSD, July 2014, pp. 426-429.
[48] Elizabeth Kho Ching Tee, Marina Antoniou, Florin Udrea, Alexander Holke, Steven John Pilkington, Db Kumar Pal, Ng Laing Yew, and Wan Azlan Bin Wan Zainal Abidin, “200V Superjunction N-Type Lateral Insulated-Gate Bipolar Transistor With Improved Latch-up Characteristics,” IEEE Trans. Electron Devices, vol. 60, no. 4, 2013, pp. 1412–1415.
[49] B. Bakeroot, J. Doutreloigne, P. Vanmeerbeek, and P. Moens. “An Ultrafast and Latch-Up Free Lateral IGBT with Hole Diverter for Junction-Isolation Technologies,” in Proc.19th ISPSD, May 2007, pp. 21–24.
[50] B. Bakeroot, J. Doutreloigne, and P. Moens, “Ultrafast Floating 75-V Lateral IGBT With a Buried Hole Diverter and an Effective Junction Isolation,” IEEE Electron Device Letter, vol. 27, no. 6, 2006, pp. 492–494.
[51] Hiroki Fujii, Shinichi Komatsu, Masaharu Sato and Toshihiko Ichikawa. “Design of an 80V-class high-side capable double-resurf JI L-IGBT,” in Proc. 23rd ISPSD, May 2011, pp. 372–375.
[52] Ying-Chieh Tsai, Jeng Gong, Wing-Chor Chan, Shyi-Yuan Wu and ChenhsinLien, “The Conduction Characteristics of a 700V Lateral Insulated-gate Bipolar Transistor in a Junction Isolation Technology” IEEE Electron Devices Letter, vol. 36, no. 9, 2015, pp. 929–931.
[53] S. Merchant, E. Arnold, H. Baumgart, S. Mukherjee, H. Pein, and R. Pinker, “Realization of High Breakdown Voltage (>700V) in Thin SOI Devices,” in Pro. 3rd ISPSD, April 1991, pp. 22-24.
[54] Johnny K. O. Sin and Satyen Mukerjee, “Lateral Insulated-Gate Bipolar Transistor (LIGBT) with a Segmented Anode Structure,” IEEE Electron Device Letter, vol. 12, no. 2, 1991, pp. 45–47.
[55] T. Paul Chow, B. Jayant Baliga, Deva N. Pattanayak, and Michael S. Adler, “The Effect of Substrate Doping on the Performance of Anode-Shorted n-Channel Lateral Insulated-Gate Bipolar Transistors,” IEEE Electron Device Letter, vol. 9, no. 9, 1988, pp.450–452.
[56] Johnny K. O. Sin, and Satyen Mukherjee, “Lateral Insulated-Gate Bipolar Transistor (LIGBT) with a Segmented Anode Structure,” IEEE Electron Device Letter, vol. 12, no. 2, 1991, pp. 45–47.
[57] Mark R. Simpson, “Analysis of Negative Differential Resistance in the I-V Characteristics of Shorted-Anode LIGBT’s,” IEEE Trans. Electron Devices, vol. 38, no. 7, 1991, pp. 1633–1640.
[58] Shyam Hardikar, R. Tadikonda, M. Sweet, K. Vershinin, and E. M. Sankara Narayanan, “A Fast Switching Segmented Anode NPN Controlled LIGBT,” IEEE Trans. Electron Devices, vol. 24, no. 11, 2003, pp. 701–703.
[59] D. W. Green, S. Hardikar, M. Sweet, K. Vershinin, R. Tadikonda, M.M. De Souza, and E. M. Sankara Narayanan, “Influence of Temperature and Doping Parameters on the Performance of Segmented Anode NPN (SA-NPN) LIGBT,” in Proc. 16th ISPSD, May 2004, pp. 285–287.
[60] David W. Green, Mark Sweet, Konstantin V. Vershinin, Shyam Hardikar, and E. M. Sankara Narayanan, “Performance Analysis of the Segment npn Anode LIGBT,” IEEE Trans. Electron Devices, vol. 52, no. 11, 2005, pp.2482–2488.
[61] Wensuo Chen, Bo Zhang, and Zhaoji Li, “Area-Efficient Fast-Speed Lateral IGBT with a 3-D n-Region-Controlled Anode,” IEEE Trans. Devices Letter, vol. 31, no. 5, 2010, pp. 467–469.
[62] Ravishankar Sunkavalli, B. Jayant Baliga, and Y.S. Huang, “High Temperature Performance of Dielectrically Isolated LDMOSFET, LIGBT and LEST,” in IEDM Tech. Dig., Dec. 1993, pp. 683–686.
[63] Emil Arnold, Howard Pein, and Sam P. Herko, “Comparison of Self-Heating Effects in bulk-silicon and SOI high-voltage devices,” in IEDM Tech. Dig., Dec. 1994, pp. 813–816.
[64] Rainer Constapel, and Jacek Korec, “Forward blocking characteristics of SOI power devices at high temperatures,” in Proc. 6th ISPSD, June 1994, pp. 117–121.
[65] B. Fatemizadeh, and D. Silber, “Modeling of LDMOS and LIGBT Structures at High Temperatures,” in Proc. 6th ISPSD, May 1994, pp. 137–142.
[66] M. Stoisiek, K.–G. Oppermann, U. Schwalke, and D. Takacs, “A Dielectric Isolated High-Voltage IC-Technology For off-line applications,” in Proc. 7th ISPSD, May 1995, pp. 325–329.
[67] Emil Arnold, Theodore Letavic, and Hemant Bhimnathwala, ”High-Temperature off-state characteristics of Thin-SOI power Devices,” IEEE Electron Device Letter, vol. 17, vol. 17, no. 12, 1996, pp. 557–559.
[68] Alex Q. Huang, and Gehan A. J. Amaratunga, “The Influence of an LIGBT on CMOS Latch up in power integrated circuit,” IEEE Trans. Electron Devices, vol. 42, no. 10, 1995, pp. 1873–1874.
[69] J. P. Laine, L. Bertolini, M. Bafleur, and C. Lochot, “High-Level Substrate Current Effects in P--epitaxy/P+-substrate Smart Power Technologies,” in Proc. 15th ISPSD, April 2003, pp. 253–256.
[70] T. Trajkovic, N. Udugampola, V. Pathirana, G. Camuso, F. Udrea, and G.A.J. Amaratunga, “800V Lateral IGBT in Bulk Si for Low Power Compact SMPS Applications,” in Proc. 25th ISPSD, May 2013, pp.401–404.
[71] G. Camuso, N. Udugampola, V. Pathirana, T. Trajkovic, and F. Udrea, “The Effect of the Collector Contact Design on the Performance and Yield of 800V Lateral IGBTs for Power ICs,” in Proc. 27th ISPSD, May 2015, pp.181–184.
[72] Wilson W. T. Chan, Johnny K. O. Sin, and S. Simon Wong, “A Novel Crosstalk Isolation Structure for Bulk CMOS Power IC’s,” IEEE Trans. Electron Devices, vol. 45, no. 7, 1998, pp.1580–1586.
[73] Jing Zhu, Long Zhang, Weifeng Sun, Yicheng Du, Keqin Huang, Meng Chen, Longxing Shi, Yan Gu, and Sen Zhang, “Further Study of the U-shaped Channel SOI-LIGBT with Enhanced Current Density for High-Voltage Monolithic ICs,” IEEE Trans. Electron Devices, vol. 63, no. 3, 2016, pp. 1161-1167.
[74] D. J. Sleeter and E. W. Enlow, “The relationship of holding points and a general solution for CMOS latch-up,” IEEE Trans. Electron Devices, vol. 39, no. 11, 1992, pp. 2592–2599.
[75] T. Chow, D. Pattanayak, B. Baliga, M. Adler, W. Hennesy, and C. Logan, “Interaction between monolithic, junction-isolated lateral insulated-gate bipolar transistors,” IEEE Trans. Electron Devices, vol. 38, no. 2, 1991, pp. 310-315.
[76] David W. Green, Shyam Hardikar, Ramakrishna Tadikonda, Mark Sweet, Konstantin V. Vershinin, and E.M. Sandare Narayanan, “Design and Analysis of Multichannel LIGBT in Junction Isolation Technology,” IEEE Trans. Electron Devices, vol. 52, no. 7, 2005, pp. 1672–1676.
[77] S. Mukherjee, M. Amato and V. Rumennik, “Influence of Device structure on the transient and steady state characteristics of LIGBT”, Electrochem Soc. Spring Meeting, Ext. Abstr., vol.87-1, 1987, pp. 158–159.
[78] T. Paul Chow, Deva N. Pattanayak, B. Jayant Baliga, Michael S. Adler, William A. Hennessy, and Clair E. Logan, “Insulated-Gate Bipolar Transistors,” IEEE Trans. on Electron Devices, vol. 38, 1991, pp. 310–315.
[79] M. Bafleur, J. Buxo, M. Puig Vidal, P. Givelin, V. Macary, and G. Sarrabarouse, “Application of a Floating Well Concept to a Latch-up-Free, Low-Cost, Smart Power High-Side Switch Technology,” IEEE Trans. on Electron Devices, vol. 40, 1993, pp. 1340–1342.
[80] D. N. Pattanayak, A. Robinson, T. P. Chow, M. S. Adler, B. J. Baliga, and E. J. Wildi, “N-channel lateral insulated gate transistors: Part I—Steady state characteristics,” IEEE Trans. Electron Devices, vol. 33, no. 12, 1986, pp. 1956–1963.
[81] J. G. Fossum and Y.-S. Kim, “Static and dynamic latchup in the LIGBT,” IEEE Trans. Electron Devices, vol. 35, no. 11, 1988, pp. 1977–1985.
[82] S. Eränen, M. M. Grönlund, M. Blomberg, and J. Kiihamãki, “The Kirk effect in the LIGBT devices,” IEEE Trans. Electron Devices, vol. 38, no. 8, 1991, pp. 1919–1924.
[83] S. Hardikar, R. Tadikonda, M. Sweet, K. Vershinin, and E. Narayanan, “A fast switching segmented anode NPN controlled LIGBT,” IEEE Electron Device Letter, vol. 24, no. 11, 2003, pp. 701–703.
[84] T. Terashima and J. Moritani, “High speed lateral-IGBT with a passive gate,” in Proc. 17th ISPSD, May 2005, pp. 91-94.
[85] D. Green, S. Hardikar, R. Tadikonda, M. Sweet, K. Vershinin, and E. Narayanan, “Design and analysis of multichannel LIGBTs in junction isolation technology,” IEEE Trans. Electron Devices, vol. 52, no. 7, 2005, pp. 1672–1676.
[86] S. Hardikar, J. Nicholls, D. Green, and E. S. Narayanan, “Influence of layout design on the performance of LIGBT,” Proc. Inst. Electr. Eng.—Circuits, Devices Systems, vol. 153, no. 1, Feb. 2006, pp. 67–72.
[87] R. Tadikonda, S. Hardikar, D. Green, M. Sweet, and E. Narayanan, “Analysis of lateral IGBT with a variation in lateral doping drift region in junction isolation technology,” IEEE Trans. Electron Devices, vol. 53, no. 7, 2006, pp. 1740–1744.
[88] M. Darwish and K. Board, “Lateral resurfed COMFET,” IEEE Electron Device Letter, vol. 20, no. 12, 1984, pp. 519–520.
[89] R. Jayaraman, V. Rumennik, B. Singer, and E. Stupp, “Comparison of high voltage devices for power integrated circuits,” in IEDM Tech. Dig., 1984, pp. 258–261.
[90] A. Robinson, D. Pattanayak, and M. Adler, “Lateral insulated gate transistors with improved latching characteristics,” in IEDM Tech. Dig., 1985, pp. 744-747.
[91] B. Baliga, “The future of power semiconductor device technology,” Proc. IEEE, vol. 89, no. 6, Jun. 2001, pp. 822-832.
[92] S. Hardikar, D. Green, and E. Narayanan, “Transient substrate currents in junction-isolated lateral IGBT,” IEEE Trans. Electron Devices, vol. 53, no. 6, 2006, pp. 1487–1490.
[93] T. Chow, D. Pattanayak, B. Baliga, M. Adler, W. Hennesy, and C. Logan, “Interaction between monolithic, junction-isolated lateral insulated-gate bipolar transistors,” IEEE Trans. Electron Devices, vol. 38, no. 2, 1991, pp. 310–315.
[94] A. Huang and G. Amaratunga, “The influence of an LIGBT on CMOS latch up in power integrated circuit,” IEEE Trans. Electron Devices, vol. 42, no. 10, 1995, pp. 1873–1874.
[95] W. W. Chan, J. K. Sin, and S. S. Wong, “An effective cross-talk isolation structure for power IC applications,” in IEDM Tech. Dig., 1995, pp. 971–974.
[96] W. Chan, J. Sin, and S. Wong, “A novel crosstalk isolation structure for bulk CMOS power IC’s,” IEEE Trans. Electron Devices, vol. 45, no. 7, 1998, pp. 1580–1586.
[97] J. Luo, Y. Liang, and B.-J. Cho, “Design of lateral IGBT protection circuit for smart power integration,” in Proc. Conf. Power Electron. Drive Syst., 1999, pp. 253–257.
[78] S. Gupta, J. Beckman, and S. Kosier, “Improved latch-up immunity in junction-isolated smart power ICs with unbiased guard ring,” IEEE Electron Device Letter, vol. 22, no. 12, 2001, pp. 600–602.
[99] B. Bakeroot, J. Doutreloigne, and P. Moens, “A new substrate current free nLIGBT for junction isolated technologies,” in Proc. Eur. Solid-State Device Res. Conf., 2004, pp. 461–464.
[100] Ludikhuize A W, et al. “A versatile 700–1200-V IC process for analog and switching applications,” IEEE Trans Electron Devices, vol. 38, no. 7, 1991, pp. 1582–1589.
[101] Qiao M, Fang J, Xiao Z Q, et al. “Design of a 1200 V MR D-RESURF LDMOS and BCD technology,” Chinese Journal of Semiconductors, 2006, 27: 1447.
[102] Qiao M, Xiao Z Q, Fang J, et al. A high voltage BCD process using thin epitaxial technology. Chinese Journal of Semiconductors, 2007, 28: 1742.
[103] Hossain Z. “Determination of manufacturing RESURF process window for a robust 700 V double RESURF LDMOS transistor,” In Proc. 20th ISPSD, May 2008, pp. 133–136.
[104] Qiao M, Hu X, Wen H J, et al. “A novel substrate-assisted RESURF technology for small curvature radius junction,” in Proc. 23th ISPSD, May 2011, pp. 16–19.
[105] Chen W J, Zhang B, Li Z H, et al. “Design and optimization of a versatile 700 V SPIC process using a fully implanted triple well technology,” in Proc. 18th ISPSD, June 2006, pp. 1–4.
[106] Chen W J, Zhang B, and Li Z J., “A novel double RESURF LDMOS and a versatile JFET device used as internal power supply and current detector for SPIC,” Microelectronics Journal, vol. 37, July 2006, pp. 574–578.
[107] K. M. Wu, “Development and Hot-Carrier Reliability Study of Integrated High-Voltage MOSFET Transistors,” Ph.D. Dissertation. 2007.
[108] Donald A. Neamen, Semiconductor Physics & Devices, Second Edition, Copyright 1997.
[109] Sze, S.M, Semiconductor Devices Physics and Technology, Copyright 1997 by John Wiley & Sons Inc.
[110] B. JAYANT BALIGA, Power Semiconductor Devices, North Carolina State State University.
[111] J. A. Apples and H.M.J. Vaes, “High Voltage Thin Layer Devices (RESURF DEVICES),” in IEDM Tech. Dig., Dec. 1979, pp. 238–241.
[112] Adrian W. Ludikhuize, “A Review of RESURF Technology,” in Proc. 12th ISPSD, May 2000, pp. 11–18.
[113] Yin Shan et al., “Design of 700V triple RESURF LDMOS with low on resistance,” Journal of Semiconductors, vol. 32, no. 11, Nov. 2011, pp. 11402–1-4.
[114] Z. Hossain et al., “Double-RESURF 700V N-channel LDMOS with Best-in-class On-resistance,” in Proc. 14th ISPSD, June 2002, pp. 137–140.
[115] B. JAYANT BALIGA, Power Semiconductor Devices, North Carolina State University.
[116] L. Lorenz, G. Deboy, A. Knapp, and M. Marz, “COOLMOSTM―A new milestone in high voltage power MOS,” in Proc. 11th ISPSD, May 1999, pp. 3–10.
[117] L. Lorenz, G. Deboy, A. Knapp, and M. Marz, “COOLMOSTM―A new milestone in high voltage power MOS,” in Proc. 11th ISPSD, May 1999, pp. 3-10.
[118] Mikio Tsujiuchi, Tetsuya Nitta, Takashi Ipposhi, Shigeto Maegaea. “Evolution of 200V Lateral-IGBT Technology,” in Proc. 26th ISPSD, July 2014, pp. 426-429.
[119] Mark R. Simpson, “Analysis of Negative Differential Resistance in the I-V Characteristics of Shorted-Anode LIGBTs,” IEEE Trans. Electron Devices, vol. 38, no. 7, 1991, pp. 1633–1640.
[120] Long Zhang, Jing Zhu, Weifeng Sun, Yicheng Du, HuiYu, Keqin Huang, and Longxing Shi, “A High Current Density SOI-LIGBT with Segmented Trenches in the Anode Region for Suppressing Negative Differential Resistance Regime,” in Proc. 27th ISPSD, May 2015, pp. 49–52.