簡易檢索 / 詳目顯示

研究生: 劉欣旻
Liu, Hsin-Min
論文名稱: 大質量星團形成環境中的噴流性質統計
Statistical properties of molecular outflows in a massive cluster-forming environment
指導教授: 陳惠茹
Chen, Huei-Ru Vivien
口試委員: 呂聖元
Liu, Sheng-Yuan
何英宏
Harsono, Daniel
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Institute of Astronomy
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 41
中文關鍵詞: 恆星形成噴流星團
外文關鍵詞: star formation, outflow, cluster
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大質量恆星的一生都影響著星系的演化。他們會在恆星形成的環境中提供強大的輻射和金屬。然而,我們至今仍然不知道大質量恆星是如何形成的。根據initial mass function,我們知道大質量恆星會和其他較小質量的恆星一起在星團中形成。在恆星形成的早期階段,會產生分子噴流。噴流可以讓我們得知原恆星在吸積過程時的性質。本論文中,我們計算了在大質量星團形成環境(G33.92+0.11)裡35個噴流的性質。我們使用一個名為Rolling Hough Transfrom的直線辨識演算法得到噴流在天球上的方向。在這些噴流中,有17個噴流能對到Suárez et al. (2021)中提供的核。我們也和其他研究噴流的論文做比較。我們得到用X_sio=10^(-9)算出來的結果和其他論文較一致,而我們並沒有發現噴流的性質和其核質量有明顯的關聯。我們需要利用 其他的分子來了解大質量恆星形成。


    The life cycle of high-mass stars affects galaxy evolution. High-mass stars provide strong radiation and metal in the star-forming environment. However, we do not know how a massive star forms. According to the initial mass function, we know that massive stars might form in a cluster with other low-mass stars. The early stages of star formation produce molecular outflows. Outflows provide the properties of the accretion process of the protostars. In this thesis, we present the properties of 35 SiO(5-4) outflows in the massive cluster-forming cloud G33.92+0.11. We identify outflows with the Rolling Hough Transform (RHT), an algorithm used for identifying linear structures and determining their orientation in a 2D image. In Total, 17 outflow
    lobes can match with cores identified in Suárez et al. (2021). We calculate the SiO column density, SiO luminosity, mass, momentum, energy, dynamical time-scale, mass-loss rate, and force for all identified outflows. Finally, we compare our results with those values in the literature. Previous results are consistent with our data using
    X_sio = 10^(-9). In the current analysis, we do not find a strong correlation between the outflow properties and the physical conditions of the cores. We suggest using other tracers for outflow to understand the high-mass star formation.

    Abstract i Acknowledgements iii List of Figures v List of Tables viii 1 Introduction 1 1.1 Problems in massive star formation .................... 1 1.2 Why use outflows? ............................. 1 1.3 Massive cluster-forming cloud G33.92+0.11. . . . . . . . . . . . 2 2 Observations 3 3 Identification of outflows 3 3.1 RHT procedure............................... 5 4 Result of identifying outflows by Rolling Hough Transform (RHT) 7 4.1 SiO outflows distribution map of G33.92+0.11 . . . . . . . . . . 10 4.2 Identifying outflow orientation on the plane of sky by RHT . . . 10 5 Outflow properties 20 5.1 SiO column density............................. 20 5.2 Mass of outflows .............................. 21 5.3 SiO Luminosity ............................... 22 5.4 Momentum and energy of outflows .................... 22 5.4.1 Dynamical time-scale and force of outflows . . . . . . . . . . 23 6 Results of outflow properties 23 7 Discussion 31 7.1 Bias from assumed same inclination angle for all outflows . . . 31 7.2 Comparison of outflow parameters..................... 31 8 Conclusions 38

    Bally, J. (2016). Protostellar Outflows. Annual Review of Astronomy & Astrophysics, 54:491–528.
    Bally, J., Ginsburg, A., Arce, H., Eisner, J., Youngblood, A., Zapata, L., and Zin- necker, H. (2017). The ALMA View of the OMC1 Explosion in Orion. The Astro- physical Journal, 837(1):60.
    Baug, T., Wang, K., Liu, T., Tang, M., Zhang, Q., Li, D., Eswaraiah, C., Liu, S.-Y., Tej, A., Goldsmith, P. F., Bronfman, L., Qin, S.-L., Tóth, V. L., Li, P.-S., and Kim, K.-T. (2020). ALMA Observations Reveal No Preferred Outflow-filament and Outflow-magnetic Field Orientations in Protoclusters. The Astrophysical Journal, 890(1):44.
    Bontemps, S., Andre, P., Terebey, S., and Cabrit, S. (1996). Evolution of outflow ac- tivity around low-mass embedded young stellar objects. Astronomy & Astrophysics, 311:858–872.
    Clark, S. E., Peek, J. E. G., and Putman, M. E. (2014). Magnetically Aligned H I Fibers and the Rolling Hough Transform. The Astrophysical Journal, 789(1):82.
    Dunham, M. M., Arce, H. G., Mardones, D., Lee, J.-E., Matthews, B. C., Stutz, A. M., and Williams, J. P. (2014). Molecular Outflows Driven by Low-mass Protostars. I. Correcting for Underestimates When Measuring Outflow Masses and Dynamical Properties. The Astrophysical Journal, 783(1):29.
    Goddi, C., Ginsburg, A., Maud, L. T., Zhang, Q., and Zapata, L. A. (2020). Mul- tidirectional Mass Accretion and Collimated Outflows on Scales of 100-2000 au in Early Stages of High-mass Protostars. The Astrophysical Journal, 905(1):25.
    Kong, S., Arce, H. G., Maureira, M. J., Caselli, P., Tan, J. C., and Fontani, F. (2019). Widespread Molecular Outflows in the Infrared Dark Cloud G28.37+0.07: Indications of Orthogonal Outflow-filament Alignment. The Astrophysical Journal, 874(1):104.
    Leurini, S., Codella, C., López-Sepulcre, A., Gusdorf, A., Csengeri, T., and Anderl, S. (2014). SiO excitation from dense shocks in the earliest stages of massive star formation. Astronomy & Astrophysics, 570:A49.
    Li, S., Sanhueza, P., Zhang, Q., Nakamura, F., Lu, X., Wang, J., Liu, T., Tatematsu, K., Jackson, J. M., Silva, A., Guzmán, A. E., Sakai, T., Izumi, N., Tafoya, D., Li, F., Contreras, Y., Morii, K., and Kim, K.-T. (2020). The ALMA Survey of 70 μm Dark High-mass Clumps in Early Stages (ASHES). II. Molecular Outflows in the Extreme Early Stages of Protocluster Formation. The Astrophysical Journal, 903(2):119.
    Li, S., Wang, J., Fang, M., Zhang, Q., Li, F., Zhang, Z.-Y., Li, J., Zhu, Q., and Zeng, S. (2019). A SiO J = 5 → 4 Survey Toward Massive Star Formation Regions. The Astrophysical Journal, 878(1):29.
    Liu, H. B., Chen, H.-R. V., Román-Zúñiga, C. G., Galván-Madrid, R., Ginsburg, A., Ho, P. T. P., Minh, Y. C., Jiménez-Serra, I., Testi, L., and Zhang, Q. (2019). Inves- tigating Fragmentation of Gas Structures in OB Cluster-forming Molecular Clump G33.92+0.11 with 1000 au Resolution Observations of ALMA. The Astrophysical Journal, 871(2):185.
    Liu, H. B., Galván-Madrid, R., Jiménez-Serra, I., Román-Zúñiga, C., Zhang, Q., Li, Z., and Chen, H.-R. (2015). ALMA Resolves the Spiraling Accretion Flow in the Luminous OB Cluster-forming Region G33.92+0.11. The Astrophysical Journal, 804(1):37.
    Liu, H. B., Jiménez-Serra, I., Ho, P. T. P., Chen, H.-R., Zhang, Q., and Li, Z.- Y. (2012). Fragmentation and OB Star Formation in High-mass Molecular Hub- Filament Systems. The Astrophysical Journal, 756(1):10.
    Mangum, J. G. and Shirley, Y. L. (2015). How to Calculate Molecular Column Density. Publications of the Astronomical Society of the Pacific, 127(949):266.
    Nguyen-Lu’o’ng, Q., Motte, F., Carlhoff, P., Louvet, F., Lesaffre, P., Schilke, P., Hill, T., Hennemann, M., Gusdorf, A., Didelon, P., Schneider, N., Bontemps, S., Duarte- Cabral, A., Menten, K. M., Martin, P. G., Wyrowski, F., Bendo, G., Roussel, H., Bernard, J. P., Bronfman, L., Henning, T., Kramer, C., and Heitsch, F. (2013). Low-velocity Shocks Traced by Extended SiO Emission along the W43 Ridges: Witnessing the Formation of Young Massive Clusters. The Astrophysical Journal, 775(2):88.
    Sánchez-Monge, Á., López-Sepulcre, A., Cesaroni, R., Walmsley, C. M., Codella, C., Beltrán, M. T., Pestalozzi, M., and Molinari, S. (2013). Evolution and ex- citation conditions of outflows in high-mass star-forming regions. Astronomy & Astrophysics, 557:A94.
    Suárez, G., Galván-Madrid, R., Aguilar, L., Ginsburg, A., Srinivasan, S., Liu, H. B., and Román-Zúñiga, C. G. (2021). A Core Mass Function Indistinguishable from the Salpeter Stellar Initial Mass Function Using 1000 au Resolution ALMA Obser- vations. arXiv e-prints, page arXiv:2107.14288.
    Wang, J.-W., Koch, P. M., Galván-Madrid, R., Lai, S.-P., Liu, H. B., Lin, S.-J., and Pattle, K. (2020). Formation of the Hub-Filament System G33.92+0.11: Local In- terplay between Gravity, Velocity, and Magnetic Field. The Astrophysical Journal, 905(2):158.
    Watt, S. and Mundy, L. G. (1999). Molecular Environments of Young Massive Stars: G34.26+0.15, G11.94-0.62, G33.92+0.11, and IRAS 18511+0146. The Astrophysical Journal Supplement Series, 125(1):143–160.
    Wu, Y., Wei, Y., Zhao, M., Shi, Y., Yu, W., Qin, S., and Huang, M. (2004). A study of high velocity molecular outflows with an up-to-date sample. Astronomy & Astrophysics, 426:503–515.

    QR CODE