簡易檢索 / 詳目顯示

研究生: 葉佳欣
Ye, Jia-Shin
論文名稱: 隨機網路上的傳遞與連接
On Random Networks with Triad Connections
指導教授: 李端興
Lee, Duan-Shin
口試委員: 張正尚
Chang, Cheng-Shang
易志偉
Yi, Chih-Wei
李端興
Lee, Duan-Shin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 39
中文關鍵詞: 社群網路
外文關鍵詞: Social Networks
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們探討了社群網路結構的問題,並此架構了一網路模型。在這模型中,我們首先利用現有的G(n,p)模型與Configuration 模型,並在此模型上,對每個節點都會有機會與自己本身朋友的朋友形成額外的鍵結,我們將此種規則命名為:Triad Formation。在此篇論文中,我們在這兩種模型上並加上自己定立的規則,推導其平均節點分支度(Degree)、分支度的分布與群聚係數。在此,我們利用兩個變數來同時調控平均節點分支度與群聚係數。


    In this paper we consider the network formation problem of social networks. In this model,
    every vertex is asked to establish an edge with the second neighbor with a probability on
    the Erd˝os-R´enyi model and the configuration model respectively. We call this operation
    triad formation. We derive the mean degree, degree distribution and the clustering
    coefficient of these two models. Here, we use two parameters to match the networks of
    given mean degrees and clustering coefficients simultaneously.

    Contents List of Figures List of Tables 1 Introduction 2 Problem Description 3 Erd˝os-R´enyi Model with Triad Formation 3.1 Degree Distribution 3.2 Clustering Coefficient 3.3 Degree Correlation 4 Configuration Model with triad attachment 4.1 Degree Distribution 4.2 Clustering Coefficients 4.3 Degree Correlation 5 Numerical and Simulation Results 6 Conclusions Bibliography

    [1] Erd˝os and R´enyi , “On random graphs,” Publicationes Mathematicicae, 6,290–297,
    1959.
    [2] M.E.J. Newman, “Networks: An Introduction,” Oxford, 2010.
    [3] A.-L. Barab´asi and R. Albert, “Emergence of Scaling in Random Networks,” Science
    286, 509, Oct 1999.
    [4] R. Ermecke, P. Mayrhofer, S. Wagner,“Agents of Diffusion - Insights from a Survey
    of Facebook Users,” System Sciences HICSS, Jan 2009.
    [5] A. Mislove, M. Marcon, K.-P. Gummadi, P. Druschel and B. Bhattacharjee, “Measurement
    and Analysis of Online Social Networks,” IMC, Oct 2007.
    [6] D.-J. Watts and S.-H. Strogatz, “Collective Dynamics of Small-World Networks,”
    Nature 393, 440, 1998.
    [7] M. Newman, “Assortative Mixing in Networks,” Physical Review Letters, Vol. 89,
    208701, Oct 2002.
    [8] M. Newman and J. Park, “Why Social Networks are different from other Types of
    Networks,” Physical Review Letters, Vol. 68, 036122, Sept 2003.
    [9] L.A.N. Amaral, A. Scala, M. Barth´e l´emy, H.E. Stanley, “Classes of Small-World
    Networks,” Natl. Acad. Sci. USA 97, 11149V11152, 2000.
    [10] M. Bogu˜n´a, R. Pastor-Satorras, A. D´ıaz-Guilera, A. Arenas, “Models of social networks
    based on social distance attachment,” Physical Review Letters. E,Vol. 70,
    056122, Nov 2004.
    [11] R. Toivonen, J.-P. Onnena, J. Saram¨aki. K. Hyv¨onen, and K. Kaski, “A Model For
    Social Networks,” Physica A, 371, 851–860, 2006.
    [12] M. Marsili, F. Vega-Redondo, and Slanina, “The Rise and Fall of a Networked
    Society: A Formal Model,” Proc. National Acad. Sci. U.S.A.,101, 1439 2004.
    [13] G. Szab´o, M. Alava, and J. Kert´esz, “Structural Transitions in Scale-Free Networks,”
    Physical Review E, Vol. 67, 056102, 2003.
    [14] P. Holme and B. J. Kim, “Growing Scale-Free Networks with Tunable Clustering,”
    Physical Review E, Vol. 65, 026107, 2002.
    [15] J. Davidsen, H. Ebel, and S. Bornholdt, “Emergence of a Small World From Local
    Interactions: Modeling Acquaintance Networks,” Physical Review Letters, Vol. 88,
    Number 12, March 2002.
    [16] J.M. Kumpula, J.-K. Onnela, J. Saram¨aki, K. Kaski, and J. Kert´esz, “Emergence
    of Communities in Weighted Networks,” Physical Review Letters, PRL 99, 228701
    2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE