研究生: |
施浩榆 Shih, Hao Yu |
---|---|
論文名稱: |
完備流形上熱核的梯度估計 A note on gradient estimate for heat kernel on complete manifolds |
指導教授: |
宋瓊珠
Sung, Chiung Jue |
口試委員: |
高淑蓉
Kao, Shu Jung 王嘉平 Wang, Jiaping |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 33 |
中文關鍵詞: | 熱方程 、梯度估計 |
外文關鍵詞: | heat equation, gradient estimate |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
(M,g)是一個Ricci曲率有下界完備n維黎曼流形。在這篇文章中,我們研究在這種流形上熱方程的漢彌爾頓梯度估計。
Let (M,g) be a complete n-dimensional Riemannian manifold with Ricci curvature bounded from blew. In this note, we study the Hamilton’s gradient estimate for the heat equations on such manifolds.
[1] Richard Hamilton, A matrix Harnack estimate for the heat equation, Comm. Anal. Geom.1 (1993),
no.1, 113-126.
[2] Brett Kotschwar, Hamilton's gradient estimate for the heat kernel on complete manifolds,
arXiv:math/0701335
[3] Leon Karp and Peter Li, The heat equation on complete Riemannian manifold, Unbulished note,
1982.
[4] Peter Li and Jiaping Wang, Complete Manifolds with Positive Spectrum, II, J. Dierential
Geom.Volume 62, Number 1 (2002), 143-162.
[5] Peter Li and Shing-Tung Yau, On the parabolic kernel of the Schrodinger operator, Acta Math. 156
(1986), no. 3-4, 153-201.
[6] Lei Ni and Luen-Fai Tam, Kahler-Ricci Flow and the Poincare-Lelong Equation, Comm. Anal. Geom
12 (2004), no. 1-2, 111-141.
[7] Shing-Tung Yau, Harmonic function on complete manifold, Comm. Pure Appl. Math. 28 (1975),
201-228