簡易檢索 / 詳目顯示

研究生: 施浩榆
Shih, Hao Yu
論文名稱: 完備流形上熱核的梯度估計
A note on gradient estimate for heat kernel on complete manifolds
指導教授: 宋瓊珠
Sung, Chiung Jue
口試委員: 高淑蓉
Kao, Shu Jung
王嘉平
Wang, Jiaping
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 33
中文關鍵詞: 熱方程梯度估計
外文關鍵詞: heat equation, gradient estimate
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • (M,g)是一個Ricci曲率有下界完備n維黎曼流形。在這篇文章中,我們研究在這種流形上熱方程的漢彌爾頓梯度估計。


    Let (M,g) be a complete n-dimensional Riemannian manifold with Ricci curvature bounded from blew. In this note, we study the Hamilton’s gradient estimate for the heat equations on such manifolds.

    1. Introduction - 2 2. Preliminary - 3 2.1. Gradient estimate and Harnack inequality - 7 2.2. Li-Yau type of gradient estimate and Harnack inequality on heat equation - 13 2.3. Upper and lower bound of heat Kernel - 20 3. Main Theorem - 27 References - 33

    [1] Richard Hamilton, A matrix Harnack estimate for the heat equation, Comm. Anal. Geom.1 (1993),
    no.1, 113-126.
    [2] Brett Kotschwar, Hamilton's gradient estimate for the heat kernel on complete manifolds,
    arXiv:math/0701335
    [3] Leon Karp and Peter Li, The heat equation on complete Riemannian manifold, Unbulished note,
    1982.
    [4] Peter Li and Jiaping Wang, Complete Manifolds with Positive Spectrum, II, J. Di erential
    Geom.Volume 62, Number 1 (2002), 143-162.
    [5] Peter Li and Shing-Tung Yau, On the parabolic kernel of the Schrodinger operator, Acta Math. 156
    (1986), no. 3-4, 153-201.
    [6] Lei Ni and Luen-Fai Tam, Kahler-Ricci Flow and the Poincare-Lelong Equation, Comm. Anal. Geom
    12 (2004), no. 1-2, 111-141.
    [7] Shing-Tung Yau, Harmonic function on complete manifold, Comm. Pure Appl. Math. 28 (1975),
    201-228

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE