簡易檢索 / 詳目顯示

研究生: 廖唯宇
Liao, Wei Yu
論文名稱: 激態基態複合物與鈣鈦礦發光元件
Exciplex and Perovskite Light Emission Devices
指導教授: 林皓武
Lin, Hao Wu
口試委員: 林子超
Lin, Tzu Chau
朱治偉
Chu, Chih Wei
吳忠幟
Wu, Chung Chih
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 122
中文關鍵詞: 有機發光二極體激態基態複合物鈣鈦礦
外文關鍵詞: organic light emission diode, exciplex, perovskite
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究將有機分子混合產生的激態基態複合物 (exciplex) 應用於有機發光二極體 (Organic Light Emission Diode, OLED),作為發光層及主體材料並優化元件效率。接著研究順序型蒸鍍,調整參數後嘗試製作鈣鈦礦發光薄膜以及有機無機混合鈣鈦礦發光元件。最後研究溶液製程中以溶劑工程 (solvent engineering) 方式製作鈣鈦礦薄膜及元件,首先以共溶劑溶解有機金屬鈣鈦礦 (organometallic lead halide perovskite) 材料,配合溶劑工程並調整製程參數製作有機無機混合鈣鈦礦太陽能電池並進行優化,最後製作以溴為基底 (Br-based) 的鈣鈦礦發光薄膜及有機無機混合鈣鈦礦發光元件。
    第一章節簡介OLED的發展過程並介紹其發光機制與量測原理。
    第二章節,我對不同有機分子混合製成的薄膜進行光物理的量測及分析以判斷是否形成激態基態複合物,挑選適當的組合及尋找最適合產生激態基態複合物的組成比例,並比較溶液製程及蒸鍍製程中的差異,接著以激態基態複合物做為發光層製作溶液及蒸鍍製程激態基態複合物發光型有機發光二極體元件 (Exciplex-based Organic Light-Emission Diodes, ExOLEDs),最高發光效率可達36.2 lm/W、電流發光效率31.2 cd/A、外部量子效率9.9%,最後將激態基態複合物作為主體材料製作螢光及磷光OLEDs,以激態基態複合物作為主體材料的磷光OLED最高發光效率可達50.3 lm/W、電流發光效率達44.8 cd/A、外部量子效率達19.4%。
    第三章節,我以本實驗室開發的順序型蒸鍍製程製作以溴為基底的鈣鈦礦發光薄膜,並嘗試將鈣鈦礦材料作為發光分子摻雜於有機主體材料中作能量轉移發光,以此方式製作的發光元件僅放出有機主體材料的藍光而無法進行能量轉移,接著我改變參數後製作以鈣鈦礦材料做為發光層的蒸鍍有機無機混合鈣鈦礦發光元件,此元件並無法有效的發光,可能原因為晶粒尺寸過大所致。
    第四章節,我以醋酸鉛 (Pb(OAc)2) 及甲基溴化胺 (methylammonium bromide, MABr) 作為有機金屬鈣鈦礦材料的反應前驅物,配合溶劑工程製作溶液製程鈣鈦礦發光薄膜,首先為了研究溶劑工程法,我以共溶劑方式溶解含碘 (Iodine, I) 及氯 (Chlorine, Cl) 的鈣鈦礦材料,搭配溶劑工程方式製作有機無機混合鈣鈦礦太陽能電池,透過多次調整製程參數後成功製作出平整的鈣鈦礦薄膜,且太陽能電池元件有VOC = 0.852 V,JSC = 21.73 mA/cm2,填充因子 (Fill Factor, F.F.) = 0.635,能量轉換效率 (Power Conversion Efficiency, PCE) 達11.8%的表現,並發現在溶劑工程下,鈣鈦礦薄膜的塗佈轉速會大幅影響鈣鈦礦薄膜的特性及元件表現,接著開始製作鈣鈦礦發光薄膜以及元件,首先調整至適當比例減少金屬鉛 (Pb) 的析出後製作為有機無機混合鈣鈦礦發光元件 (organic-inorganic hybrid lead halide perovskite light-emitting diode, PeLED),經過優化的元件改以濺鍍氧化鎳 (NiO) 作為電洞傳輸層,配合添加物型溶劑工程後可以穩定製作發光元件,元件最大亮度有906 cd/m2,最高發光效率達3.5 lm/W、電流發光效率達8.6 cd/A、外部量子效率達2.7%。


    In this thesis, I first studied the exciplex formation in the physically blended organic thin films. By incorporating these exciplex formation organic thin films as the emission layers and the host materials in the devices, a series of organic light emission diodes (OLEDs) were fabricated and optimized. Then, I investigated Br-based organometallic lead halide perovskite films and devices by sequential vacuum deposition process. At last, I studied on perovskite films and devices by solvent engineering. At the beginning, solution-processed organometallic lead halide perovskite solar cells were fabricated and optimized to investigate solvent engineering profoundly. Then, I manufactured and optimized Br-based organometallic lead halide perovskite films by solvent engineering. By utilizing perovskite films as emission layers, I fabricated a series of organic-inorganic hybrid halide perovskite light-emitting diodes (PeLEDs).
    In the introduction section, I briefly introduced the development, operation principles and measurement methodology of OLEDs.
    In the second chapter, I studied the photophysics properties of the films composed of physical blending of varios organic materials by solution and vacuum process. The ratios between two carefully selected materials were optimized to enhance the exciplex formation and light-emission properties. The best device showed a luminous efficacy of 36.2 lm/W, a current efficiency of 31.2 cd/A, and an external quantum efficiency (EQE) of 9.9%. I also demonstrated fluorescent and phosphorescent solution-processed and vacuum-processed OLEDs utilizing exciplex-formation hosts. The best phosphorescent OLED showed a luminous efficacy of 50.3 lm/W, a current efficiency of 44.8 cd/A, and an EQE of 19.4%.
    In the third chapter, I made Br-based organometallic lead halide perovskite films by sequential vacuum deposition, and tried to dope the perovskite materials into organic host materials to realize energy-transfering host-guest system. The light-emitting devices with these perovskite-doped films as the emission layer only exhibited blue light from the organic host materials. There was no trace of energy transfer between the organic-inorganic hybrid halide perovskites and the organic materials. Then, I turned to fabricate vacuum-processed light-emission devices with pure Br-based organic-inorganic hybrid halide perovskite as the emission layer. However, these devices didn’t exhibit any light-emitting property. The reason may be ascribed to the oversize of the perovskite crystals.
    In the forth chapter, we manufactured solution-processed organometallic lead halide perovskite films with lead acetate (Pb(OAc)2) and methylammonium bromide (MABr) as precursors along with solvent engineering process. First, to understand the mechanism of solvent engineering, organic-inorganic hybrid halide perovskite solar cells were fabricated by solution process along with solvent engineering process. After optimizations, I successfully fabricated uniform perovskite films. The solar cell utilizing these films as the active layer achieved a VOC of 0.852 V, a JSC of 21.73 mA/cm2, a fill factor of 0.635, and a power conversion efficiency of 11.8%. Besides, I found that spin speed of perovskite film strongly influences the property of perovskite film and the performance of the devices Then, I started the study of perovskite film made from Pb(OAc)2 and MABr. After optimizing the ratio between two precursors to prevent the presence of Pb atoms, we fabricated a series of PeLEDs. The optimized PeLEDs with sputtered nickel(II) oxide (NiO) as hole transporting layers exhibited a stable performance and reached a maximum luminance of 906 cd/m2, a luminous efficacy of 3.5 lm/W, a current efficiency of 8.6 cd/A, and an EQE of 2.7%.

    第1章 序論 1 1-1 有機發光二極體發展概述 1 1-2 鈣鈦礦發光二極體發展概述 3 1-3 薄膜量子產率量測原理與架設 6 1-4 瞬態光致發光頻譜量測原理與架設 8 1-5 有機發光元件與有機無機混合鈣鈦礦發光元件發光原理 10 1-5.1 基本工作原理 10 1-5.2 有機材料能量轉移機制 12 1-5.3 非輻射能量轉移 14 1-5.4 螢光和磷光發光 16 1-6 量測原理 18 1-6.1 放射學與光度學 18 1-6.2 亮度量測 19 1-6.3 效率量測 20 1-6.4 CIE色座標與色溫 22 1-6.5 演色性 25 1-7 論文架構 28 第2章 激態基態複合物發光型OLED元件 29 2-1 激態基態複合物簡介 29 2-2 激態基態複合物形成測試 33 2-3 溶液製程激態基態複合物發光型OLED 42 2-4 蒸鍍製程激態基態複合物發光型OLED 49 2-5 BI系列材料激態基態複合物形成測試及溶液製程元件 61 2-6 結論 67 第3章 蒸鍍製程有機無機混合鈣鈦礦發光元件 69 3-1 蒸鍍與順序型蒸鍍製程簡介 69 3-2 順序型蒸鍍製程主客體系統鈣鈦礦發光薄膜與元件 72 3-3 順序型蒸鍍製程鈣鈦礦發光薄膜與元件 77 3-4 結論 82 第4章 溶液製程有機無機混合鈣鈦礦發光元件 84 4-1 溶液製程鈣鈦礦發光薄膜及元件簡介 84 4-2 溶液製程有機無機混合鈣鈦礦太陽能電池簡介 87 4-3 鈣鈦礦前驅物溶液製備與溶劑工程 90 4-4 以溶劑工程製作有機無機混合鈣鈦礦太陽能電池 91 4-5 溶液製程鈣鈦礦發光薄膜前驅物溶液參數調配 98 4-6 溶液製程有機無機混合鈣鈦礦發光元件 104 4-7 氧化鎳作為電洞傳輸層的有機無機混合鈣鈦礦發光元件 107 4-8 添加物型溶劑工程有機無機混合鈣鈦礦發光元件 111 4-9 結論 114 第5章 結論與未來展望 116 參考資料 119

    [1] M. Pope, P. Magnante, H. P. Kallmann, J. Chem. Phys. 1963, 38, 2042.
    [2] C. W. Tang, S. A. Vanslyke, Appl. Phys. Lett. 1987, 51, 913.
    [3] C. W. Tang, S. A. VanSlyke, C. H. Chen, J. Appl. Phys. 1989, 65, 3610.
    [4] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539.
    [5] S. R. Forrest, M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, Nature 1998, 395, 151.
    [6] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234.
    [7] A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T.-W. Wang, S. D. Stranks, H. J. Snaith, R. J. Nicholas, Nature Physics 2015, 11, 582.
    [8] Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, P. Meredith, Nat. Photonics 2014, 9, 106.
    [9] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Science 2013, 342, 341.
    [10] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, N. G. Park, Sci. Rep. 2012, 2, 591.
    [11] M. Liu, M. B. Johnston, H. J. Snaith, Nature 2013, 501, 395.
    [12] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Energy Environ. Sci. 2016.
    [13] F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Huttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atature, R. T. Phillips, R. H. Friend, J. Phys. Chem. Lett. 2014, 5, 1421.
    [14] F. Zhang, H. Zhong, C. Chen, X. G. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong, ACS Nano 2015, 9, 4533.
    [15] Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, R. H. Friend, Nat. Nanotechnol. 2014, 9, 687.
    [16] Y. H. Kim, H. Cho, J. H. Heo, T. S. Kim, N. Myoung, C. L. Lee, S. H. Im, T. W. Lee, Adv. Mater. 2015, 27, 1248.
    [17] G. Li, Z. K. Tan, D. Di, M. L. Lai, L. Jiang, J. H. Lim, R. H. Friend, N. C. Greenham, Nano Lett. 2015, 15, 2640.
    [18] J. Wang, N. Wang, Y. Jin, J. Si, Z. K. Tan, H. Du, L. Cheng, X. Dai, S. Bai, H. He, Z. Ye, M. L. Lai, R. H. Friend, W. Huang, Adv. Mater. 2015, 27, 2311.
    [19] H. Cho, S. H. Jeong, M. H. Park, Y. H. Kim, C. Wolf, C. L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, T. W. Lee, Science 2015, 350, 1222.
    [20] J. C. de Mello, H. F. Wittmann, R. H. Friend, Adv. Mater. 1997, 9, 230.
    [21] H. Yersin, 2004, 241.
    [22] http://www.uni-leipzig.de/~pwm/web.
    [23] http://chemwiki.ucdavis.edu/Theoretical_Chemistry/Fundamentals.
    [24] http://www.lemoledlight.com/led-light-source/#sthash.wXEmADNu.dpbs.
    [25] K. Goushi, C. Adachi, Appl. Phys. Lett. 2012, 101, 023306.
    [26] Y.-S. Park, K.-H. Kim, J.-J. Kim, Appl. Phys. Lett. 2013, 102, 153306.
    [27] W. Y. Hung, G. C. Fang, Y. C. Chang, T. Y. Kuo, P. T. Chou, S. W. Lin, K. T. Wong, ACS Appl. Mater. Interfaces 2013, 5, 6826.
    [28] L. Zhang, C. Cai, K. F. Li, H. L. Tam, K. L. Chan, K. W. Cheah, ACS Appl. Mater. Interfaces 2015, 7, 24983.
    [29] X. Ban, K. Sun, Y. Sun, B. Huang, W. Jiang, Org. Electron. 2016, 33, 9.
    [30] K.-T. Wong, SPIE Newsroom 2016.
    [31] Z. Chen, X.-K. Liu, C.-J. Zheng, J. Ye, C.-L. Liu, F. Li, X.-M. Ou, C.-S. Lee, X.-H. Zhang, Chem. Mater. 2015, 27, 5206.
    [32] Y.-S. Park, S. Lee, K.-H. Kim, S.-Y. Kim, J.-H. Lee, J.-J. Kim, Adv. Funct. Mater. 2013, 23, 4914.
    [33] D.-Y. Zhou, H. Zamani Siboni, Q. Wang, L.-S. Liao, H. Aziz, J. Phys. Chem. C 2014, 118, 24006.
    [34] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, Nat. Mater. 2014, 13, 897.
    [35] R. A. Kerner, L. Zhao, Z. Xiao, B. P. Rand, J. Mater. Chem. A 2016, 4, 8308.
    [36] Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, Adv. Mater. 2014, 26, 6503.
    [37] C. W. Chen, H. W. Kang, S. Y. Hsiao, P. F. Yang, K. M. Chiang, H. W. Lin, Adv. Mater. 2014, 26, 6647.
    [38] S. Y. Hsiao, H. L. Lin, W. H. Lee, W. L. Tsai, K. M. Chiang, W. Y. Liao, C. Z. Ren-Wu, C. Y. Chen, H. W. Lin, Adv. Mater. 2016.
    [39] Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Nat. Commun. 2014, 5, 5784.
    [40] Z. Y. Zhang, H. Y. Wang, Y. X. Zhang, Y. W. Hao, C. Sun, Y. Zhang, B. R. Gao, Q. D. Chen, H. B. Sun, Sci. Rep. 2016, 6, 27286.
    [41] J. C. Yu, B. Kim da, E. D. Jung, B. R. Lee, M. H. Song, Nanoscale 2016, 8, 7036.
    [42] B. R. Sutherland, E. H. Sargent, Nat. Photonics 2016, 10, 295.
    [43] B. Jiao, X. Zhu, W. Wu, H. Dong, B. Xia, J. Xi, T. Lei, X. Hou, Z. Wu, Nanoscale 2016, 8, 11084.
    [44] N. Wang, L. Cheng, J. Si, X. Liang, Y. Jin, J. Wang, W. Huang, Appl. Phys. Lett. 2016, 108, 141102.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE