研究生: |
林子翔 Lin, Tzu-Hsiang |
---|---|
論文名稱: |
發展基於碘化鈉偵檢器之瞬發加馬輻射偵檢系統進行質子射程驗證 Development of NaI-based prompt gamma detection system for proton range verification |
指導教授: |
林明緯
Lin, Ming-Wei 蔡惠予 Tsai, Hui-Yu |
口試委員: |
詹美齡
Jan, Meei-Ling 張似瑮 Chang, Szu-Li |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 質子治療 、瞬發加馬輻射 、射程驗證 、輻射度量 |
外文關鍵詞: | Proton therapy, Prompt gamma, Range Verification, Radiation measurement |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究發展基於碘化鈉偵檢器之瞬發加馬輻射量測系統用以進行質子射程驗證,偵檢器系統由兩吋碘化鈉偵檢器及兩毫米縫隙之鉛準直儀構成,並以30 MeV, 1.5 nA 質子束照射聚乙烯及壓克力樹脂,量測瞬發加馬輻射隨深度之強度變化,藉以推估質子射程。此研究首要目標在於確認偵檢系統特性,經由實驗得知系統無感時間為1028 ns,藉由基準切割法了解堆積訊號比率為3 %,證明在此照射環境下偵檢器系統可有效運作。以高斯能譜訊號展延(GEB)方法將模擬能譜擬合實驗能譜,其結果提供瞬發加馬輻射於特定深度下的產量,並可得知系統對4.4 MeV光子的偵檢效率為7.1 × 10^(-6)。理論上在給定的一個質子能量Ep下,一個靶材深度d的瞬發加馬輻射產量(yield)為質子數量n(Ep)與反應巨觀截面Σ(E_p)之乘積。實驗中即使用步進馬達移動靶材以取樣並繪製在10公厘靶材深度內4.4 MeV 與6.13 MeV瞬發加馬輻射隨深度之強度變化。實驗結果顯示每一深度之取樣時間需大於1秒鐘,即大於9.375×10^9 個質子入射進靶材才可使此碘化鈉偵檢系統量測到足夠強之訊號並有效辨識瞬發加馬輻射峰值位置與獲取足夠的空間解析度。
本研究也建立一個數值模型以計算瞬發加馬輻射隨深度之強度變化。藉由讀入蒙地卡羅模擬所得之30 MeV質子束入射靶材後隨深度的能量及數量分佈,並導入瞬發加馬輻射產量截面資料庫進行計算,結果顯示在聚乙烯靶材4.4 MeV峰值位置為5.7 mm與實驗量測到之峰值位置5.5 mm有0.2 mm的差異。使用壓克力樹脂時,數值計算的4.4 MeV峰值位置為4 mm與實驗量測到之峰值位置4.8 mm有0.8 mm的差異。此峰值位置差異推測為截面資料庫不完全所導致。
本研究發展出一套碘化鈉偵檢系統可有效量測瞬發加馬輻射產量隨深度之強度變化,具備用於質子治療時驗證質子射程的潛力。
This study focuses on developing a NaI-based prompt gamma-ray detection system for proton range verification. This system is composed of a 2-inches NaI detector and a slit collimator with a width of 2 mm. When 30-MeV proton beam irradiates a PE or a PMMA phantom, the intensity distribution of prompt gamma emissions along the proton path can be acquired by moving the phantom and be used to estimate the proton range subsequently. One major purpose is to characterized this NaI-based system, from which the deadtime ~ 1028 ns that gives the signal missing rate ~ 0.05 % and the pile-up signal ratio ~ 3% is identified at the proton current ~ 1.5 nA; in this way, the used NaI-detection system can efficiently acquire prompt gamma signals at a current level < 5 nA generally applied in proton therapy without significant data loss. The Gaussian energy broadening fitting was utilized to evaluate the absolute prompt gamma yield at a specific depth; as a result, the detection efficiency is 7.1×10^(-6) for 4.4 MeV photons. In principle, the prompt gamma yield at a specific depth d is determined from the product of proton number n(Ep) and macroscopic cross section Σ(E_p) at a proton energy Ep. By using a stepping motor to move the PE or PMMA phantom, intensities of 4.4-MeV and 6.13-MeV prompt gamma-ray emissions are scanned and recorded within the depth of 10 mm. At the proton current ~ 1.5 nA, results show that the measuring time at a specific depth d should be > 1 seconds, such that > 9.375×10^9 protons can generate 4.4–MeV gamma-rays to a level capable of clearly identifying the peak of the gamma-ray distribution in a PE or a PMMA phantom. By incorporating the number and energy distributions of protons acquired with Monte Carlo simulation and the prompt gamma yield cross section, an analytical mode is developed to calculate the intensity distribution of prompt gamma-rays along the proton penetrating depth in a target. For 30-MeV protons, the calculated emission peak of 4.4 MeV gamma rays locating at 5.7 mm in a PE target is reasonably close to the experimental result at 5.5 mm. For a PMMA target irradiated with 30-MeV protons, the calculated emission peak at 4.8 mm shows a greater discrepancy with respect to the experimental one of 4 mm. Nevertheless, results shown in the thesis demonstrate that a NaI-based prompt gamma-ray detection system can effectively resolve the variation of prompt gamma yield along the proton path and is expected to be further developed in the application of proton range verification.
[1] H.Breuer, B. J.Smit, H.Breuer, and B. J.Smit, “Interaction of Protons with Matter,” in Proton Therapy and Radiosurgery, Berlin, Heidelberg, 2000, pp. 21–53.
[2] H.Paganetti, Proton Therapy Physics. CRC Press, 2011.
[3] 張皓婷, “核醫影像用於質子治療中腫瘤定位與質子射程驗證,” 生醫工程與環境科學系, 國立清華大學, 2016.
[4] B.Schaffner and E.Pedroni, “The precision of proton range calculations in proton radiotherapy treatment planning: Experimental verification of the relation between CT-HU and proton stopping power,” Phys. Med. Biol., vol. 43, no. 6, pp. 1579–1592, 1998.
[5] A. C.Knopf and A.Lomax, “In vivo proton range verification: A review,” Phys. Med. Biol., vol. 58, no. 15, pp. 131–160, 2013.
[6] K. R.Britton et al., “Assessment of Gross Tumor Volume Regression and Motion Changes During Radiotherapy for Non-Small-Cell Lung Cancer as Measured by Four-Dimensional Computed Tomography,” Int. J. Radiat. Oncol. Biol. Phys., vol. 68, no. 4, pp. 1036–1046, 2007.
[7] M. H. P.Smitsmans et al., “The Influence of a Dietary Protocol on Cone Beam CT-Guided Radiotherapy for Prostate Cancer Patients,” Int. J. Radiat. Oncol. Biol. Phys., vol. 71, no. 4, pp. 1279–1286, 2008.
[8] J. M.Balter, R. K.TenHaken, T. S.Lawrence, K. L.Lam, andJ. M.Robertson, “Uncertainties in CT-based radiation therapy treatment planning associated with patient breathing,” Int. J. Radiat. Oncol. Biol. Phys., vol. 36, no. 1, pp. 167–174, 1996.
[9] E.Sheldon and D.M. Van Patter, “Compound Inelastic Nucleon and Gamma-Ray Angular Distributions for Even- and Odd-Mass Nuclei,” Rev. Mod. Phy., vol. 38, no. 143, 1966.
[10] J. M.Verburg and J.Seco, “Proton range verification through prompt gamma-ray spectroscopy,” Phys. Med. Biol., vol. 59, no. 23, pp. 7089–7106, 2014.
[11] K. J.Foley, G. L.Salmon, and A. B.Clegg, “Gamma radiation from the bombardment of 16O and 19F nuclei with 150 MeV protons,” Nucl. Phys., vol. 31, pp. 43–52, Mar.1962.
[12] F. L.Lang, C. W.Werntz, C. J.Crannell, J. I.Trombka, and C. C.Chang, “Cross sections for production of the 15.10-MeV and other astrophysically significant gamma-ray lines through excitation and spallation of C12 and O16 with protons,” Phys. Rev. C, vol. 35, no. 4, pp. 1214–1227, 1987.
[13] J.Kiener et al., “γ -ray production by inelastic proton scattering on 16O and 12C ,” Phys. Rev. C, vol. 58, no. 4, pp. 2174–2179, 1998.
[14] A.Belhout et al., “γ-ray production by proton and α-particle induced reactions on 12-C, 16-O, 24-Mg, and Fe,” Phys. Rev. C, vol. 76, no. 3, p. 034607, Sep.2007.
[15] K. T.Lesko et al., “Measurements of cross sections relevant to γ -ray line astronomy,” Phys. Rev. C, vol. 37, no. 5, pp. 1808–1817, May1988.
[16] J.Narayanaswamy, P.Dyer, S. R.Faber, andS. M.Austin, “Production of 6.13-MeV gamma rays from the O16(p,pO16 reaction at 23.7 and 44.6 MeV,” Phys. Rev. C, vol. 24, no. 6, pp. 2727–2730, Dec.1981.
[17] A. B.Clegg, K. J.Foley, G. L.Salmon, andR. E.Segel, “Gamma radiation from the medium energy proton bombardment of lithium, beryllium, boron, carbon and nitrogen,” Proc. Phys. Soc., vol. 78, no. 5, pp. 681–694, 1961.
[18] F.Stichelbaut and Y.Jongen, “Verification of the proton beam position in the patient by the detection of prompt gamma rays emission,” in 39th Meeting of the Particle Therapy Co-Operative Group (San Francisco), 2003, pp. 1–5.
[19] C. H.Min, C. H.Kim, M. Y.Youn, and J. W.Kim, “Prompt gamma measurements for locating the dose falloff region in the proton therapy,” Appl. Phys. Lett., vol. 89, no. 18, pp. 2–5, 2006.
[20] C. H.Min, J. W.Kim, M. Y.Youn, and C. H.Kim, “Determination of distal dose edge location by measuring right-angled prompt-gamma rays from a 38 MeV proton beam,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 580, no. 1 SPEC. ISS., pp. 562–565, 2007.
[21] J.Krimmer, D.Dauvergne, J. M.Létang, and Testa, “Prompt-gamma monitoring in hadrontherapy: A review,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 878, no. May 2017, pp. 58–73, 2018.
[22] J. H.Park et al., “Multi-slit prompt-gamma camera for locating of distal dose falloff in proton therapy,” Nucl. Eng. Technol., vol. 51, no. 5, pp. 1406–1416, 2019.
[23] C. H.Min, H. R.Lee, C. H.Kim, and S. B.Lee, “Development of array-type prompt gamma measurement system for in vivo range verification in proton therapy,” Med. Phys., vol. 39, no. 4, pp. 2100–2107, 2012.
[24] J.Krimmer et al., “Collimated prompt gamma TOF measurements with multi-slit multi-detector configurations,” J. Instrum., vol. 10, no. 1, 2015.
[25] C.Richter et al., “First clinical application of a prompt gamma based in vivo proton range verification system,” Radiother. Oncol., vol. 118, no. 2, pp. 232–237, 2016.
[26] Y.Xie et al., “Prompt Gamma Imaging for In Vivo Range Verification of Pencil Beam Scanning Proton Therapy,” Int. J. Radiat. Oncol. Biol. Phys., vol. 99, no. 1, pp. 210–218, 2017.
[27] D.Kim, H.Yim, and J. W.Kim, “Pinhole camera measurements of prompt gamma-rays for detection of beam range variation in proton therapy,” J. Korean Phys. Soc., vol. 55, no. 4, pp. 1673–1676, 2009.
[28] V.Bom, L.Joulaeizadeh, and F.Beekman, “Real-time prompt gamma monitoring in spot-scanning proton therapy using imaging through a knife-edge-shaped slit,” Phys. Med. Biol., vol. 57, no. 2, pp. 297–308, 2012.
[29] I.Perali et al., “Prompt gamma imaging of proton pencil beams at clinical dose rate,” Phys. Med. Biol., vol. 59, no. 19, pp. 5849–5871, 2014.
[30] J.Smeets et al., “Experimental comparison of knife-edge and multi-parallel slit collimators for prompt gamma imaging of proton pencil beams,” Front. Oncol., vol. 6, no. JUN, pp. 1–8, 2016.
[31] Y.Nakamura, K.Shimazoe, and H.Takahashi, “Design and fabrication of endoscope-type Compton camera,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 731, pp. 283–287, 2013.
[32] D. B.Everett, J. S.Fleming, R. W.Todd, and J. M.Nightingale, “Gamma-Radiation Imaging System Based on the Compton Effect.,” Proc. Inst. Electr. Eng., vol. 124, no. 11, pp. 995–1000, 1977.
[33] C.Golnik et al., “Range assessment in particle therapy based on prompt γ-ray timing measurements,” Phys. Med. Biol., vol. 59, no. 18, pp. 5399–5422, 2014.
[34] F.Hueso-González et al., “First test of the prompt gamma ray timing method with heterogeneous targets at a clinical proton therapy facility,” Phys. Med. Biol., vol. 60, no. 16, pp. 6247–6272, 2015.
[35] G.Pausch et al., “Scintillator-Based High-Throughput Fast Timing Spectroscopy for Real-Time Range Verification in Particle Therapy,” IEEE Trans. Nucl. Sci., vol. 63, no. 2, pp. 664–672, 2016.
[36] J. M.Verburg, K.Riley, T.Bortfeld, andJ.Seco, “Energy- and time-resolved detection of prompt gamma-rays for proton range verification,” Phys. Med. Biol., vol. 58, no. 20, 2013.
[37] C. M. V.Panaino, R. I.Mackay, K. J.Kirkby, and M. J.Taylor, “A New Method to Reconstruct in 3D the Emission Position of the Prompt Gamma Rays following Proton Beam Irradiation,” Sci. Rep., vol. 9, no. 1, pp. 15–17, 2019.
[38] R.Casanovas, J. J.Morant, and M.Salvado, “Development and calibration of a real-time airborne radioactivity monitor using gamma-ray spectrometry on a particulate filter,” IEEE Trans. Nucl. Sci., vol. 61, no. 2, pp. 727–731, 2014.
[39] S.Agostinelli et al., “GEANT4 - A simulation toolkit,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 506, no. 3, pp. 250–303, 2003.
[40] J.Allison et al., “Geant4 developments and applications,” IEEE Trans. Nucl. Sci., vol. 53, no. 1, pp. 270–278, 2006.
[41] A.Dotti, M.Asai, G.Barrand, I.Hrivnacova, andK.Murakami, “Extending Geant4 Parallelism with external libraries (MPI, TBB) and its use on HPC resources,” 2015 IEEE Nucl. Sci. Symp. Med. Imaging Conf. NSS/MIC 2015, vol. 94025, pp. 3–4, 2016.
[42] G. A. P.CIRRONE et al., “Hadrontherapy: a Geant4-Based Tool for Proton/Ion-Therapy Studies,” Prog. Nucl. Sci. Technol., vol. 2, pp. 207–212, 2011.
[43] C. Z.Jarlskog and H.Paganetti, “Physics settings for using the Geant4 toolkit in proton therapy,” IEEE Trans. Nucl. Sci., vol. 55, no. 3, pp. 1018–1025, 2008.
[44] G.Dietze andH.Klein, “Gamma-calibration of NE 213 scintillation counters,” Nucl. Instruments Methods, vol. 193, no. 3, pp. 549–556, 1982.
[45] H.Schölermann and H.Klein, “Optimizing the energy resolution of scintillation counters at high energies,” Nucl. Instruments Methods, vol. 169, no. 1, pp. 25–31, 1980.
[46] V.Becares and J.Blazquez, “Detector dead time determination and optimal counting rate for a detector near a spallation source or a subcritical multiplying system,” Sci. Technol. Nucl. Install., vol. 2012, 2012.
[47] G. F.Knoll, Radiation Detection and Measurement, 3rd Editio., no. January 2010. New York, NY, USA: John Wiley & Sons, 2001.
[48] J.Jeyasugiththan and S. W.Peterson, “Evaluation of proton inelastic reaction models in Geant4 for prompt gamma production during proton radiotherapy,” Phys. Med. Biol., vol. 60, no. 19, pp. 7617–7635, 2015.
[49] M.Zarifi, S.Guatelli, Y.Qi, D.Bolst, D.Prokopovich, and A.Rosenfeld, “Characterization of prompt gamma rays for in-vivo range verification in hadron therapy: A Geant4 simulation study,” J. Phys. Conf. Ser., vol. 1154, no. 1, pp. 6–10, 2019.
[50] J. M.Verburg, H. A.Shih, and J.Seco, “Simulation of prompt gamma-ray emission during proton radiotherapy,” Phys. Med. Biol., vol. 57, no. 17, pp. 5459–5472, 2012.