研究生: |
林淑娟 Lim, Suh-Ciuan |
---|---|
論文名稱: |
鎵化鉑、鎵化鈀和鉑化錫奈米合金材料之合成與其應用於電催化反應的研究 Synthesis of Gallium-Platinum, Gallium-Palladium and Platinum-Tin Nanomaterials for electrocatalytic applications |
指導教授: |
段興宇
Tuan, Hsing-Yu |
口試委員: |
周更生
黃暄益 曾院介 張恕豪 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2018 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 95 |
中文關鍵詞: | 電化學觸媒 、電解水產氫 、燃料電池 、鎵化鉑 、鎵化鈀 、鉑化錫 |
外文關鍵詞: | electrocatalysts, hydrogen evolution reaction, fuel cell, gallium-platinum, gallium-palladium, platinum-tin |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
發展高效能和穩定電化學觸媒用於電解水產氫和燃料電池,是綠色能源的一項重要課題。本論文主要研究貴金屬基奈米材料的合成與其電催化反應之應用,主要內容概括如下:(1)合成爆米花形鎵化鉑(GaPt3)奈米粒子及其作為電解水產氫反應(HER)電催化劑之應用(2)鎵化鈀(GaPd2)奈米材料的形態控制並應用於HER(3)厚度小於1 nm之鉑化錫(PtSn)奈米片用於甲醇和乙醇氧化反應(MOR和EOR)。
儘管HER的替代材料快速增長,但Pt基或Pt合金材料仍然是最有效的催化劑。我們採用熱溶劑合成法製備爆米花形GaPt3奈米顆粒具有間金屬特性,其凹凸不平的粗糙表面,為催化反應提供了較大的表面積使其反應活性增加。然而於HER中,GaPt3奈米粒子的電催化活性首次於本研究中進行評估。線性掃描伏安法結果表示GaPt3奈米粒子於酸性溶液中具有優於商業白金觸媒的卓越的電催化活性,僅需27mV過電位即可達到10 mA / cm2電流密度和43.3mV / dec的塔菲爾斜率。而在大工作面積 (5 cm2) 反應,電流密度10 mA/cm2下仍可維持相當低的過電位(<80 mV) 。接著做觸媒持久度的評估,GaPt3奈米粒子做為工作電極的催化反應,以伏安法進行10000次CV掃描(−0.3 to 0.2 V vs. RHE)和48小時 V的穩定性測試。結果顯示i-t curve穩定無衰退現象,故GaPt3奈米粒子可做電解水產氫長效型觸媒之應用。
最近,人們一直致力於開發更有活性和穩定的Pd基電催化劑,以部分或完全取代稀有且昂貴的Pt。在這裡,我們開發了一種簡便的熱注射法,並成功合成了分散性佳和形狀控制良好的GaPd2奈米材料,包括多面體、奈米顆粒和奈米線用於HER作為電化學觸媒。所有GaPd2奈米材料都表現出優於商用Pd催化劑的HER活性,並且在酸性介質中顯示其高穩定性。其中,GaPd2納米粒子僅需要24.3 mV的過電位達到10 mA / cm2的電流密度,此效能優於大多數Pt基奈米材料。此外,以伏安法進行10000次CV掃描(−0.3 - 0.2 V vs. RHE)和24小時的穩定性測試,各形狀之GaPd2催化劑都表現出與初始試驗中相近的i-V曲線和穩定的電流密度。我們進一步評估了GaPd2催化劑的質量活性,值得一提的是與商用Pd觸媒相比,GaPd2多面體、奈米顆粒和奈米線在-0.1 V vs. RHE的質量活性方面的表現為商用Pd觸媒的3.7, 5和2.3倍。
MOR和EOR發生於直接醇燃料電池(direct alcohol fuel cell, DAFC)的陽極,所以製備對MOR和EOR具有高度電催化活性的電極觸媒材料對DAFC研究具有重要的意義。我們利用溶液膠體法合成厚度為0.6-0.9 nm的PtSn奈米片作為電氧化觸媒在鹼性和酸性環境中進行MOR和EOR。由於特定的結構和組成特徵, PtSn奈米片相對於商用Pt黑和Pt /碳催化劑皆表現出優異的活性和耐久性。 PtSn奈米片不僅在MOR中表現出優異的質量活性(871.6 mA mg Pt -1),為商用Pt /碳催化劑的2.3倍(371 mA mg Pt -1)和Pt黑的10.1倍(86.1 mA mg Pt -1); 在EOR也具有673.6 mA mg Pt -1的質量活性,為商用Pt黑(127.7 mA mg Pt -1)的5.3倍,和商用Pt /碳(295 mA mg Pt -1)的2.3倍。和其他以PtSn作為電催化劑的相關研究報導比較,這是MOR和EOR反應中的最佳表現。推測可能原因是由於其小於1 nm的2D片狀形態,導致大量暴露高反應性晶面(111)而造成催化活性提升。
The development of highly active and stable electrocatalysts for the hydrogen evolution reaction (HER) and fuel cell application is one of the main aims to the area of renewable energy. In this study, we describe the synthesis and electrocatalytic applications of noble metal based nanomaterials as electrocatalysts, the main contents are summarized as follows: (1) Popcorn-shaped gallium-platinum (GaPt3) nanoparticles were synthesized and its application as electrocatayst for hydrogen evolution reaction (HER) was investigated (2) Gallium-palladium (GaPd2) were prepared with morphology control for HER application (3) Sub-1nm platinum-tin (PtSn) nanosheets for methanol and ethanol oxidation reactions (MOR and EOR).
In spite of the rapid growth of alternative materials for HER, Pt-based or Pt alloy materials are still the most efficient catalysts. Here, we report a hot-solvent synthesis for producing pop-corn shaped GaPt3 nanoparticles, which exhibits intermetallic behavior with abundant uneven surfaces that guarantee the extensive catalytic active edge sites. The electrochemical catalytic activity of GaPt3-based electrode towards HER was demonstrated for the first time, resulting an outstanding performance of only 27 mV overpotential to achieve the 10 mA/cm2 current density and a Tafel slope of 43.3 mV/dec. (vs. RHE) in acidic media, which is rather superior to that of commercial Pt catalysts and a relatively low overpotential (<80 mV) was obtained even operated at large area (5 cm2). Moreover, cycling tests for 10000-cycle CV sweep (−0.3 to 0.2 V vs. RHE) and durability test for 48 hours were applied and the performance remains still, thus giving the confirmation to the long-lasting feature of GaPt3 nanoparticles.
Recently, great efforts have been focusing on developing more active and stable Pd-based electrocatalyts to partially or completely replace rare and costly Pt. Here we develop a facile hot injection method and successfully synthesis the well-dispersed and shape-controlled GaPd2 nanomaterials including polyhedrons, nanoparticles and nanowires. All the as-synthesized catalysts exhibit superior HER activity than the commercial pure Pd catalyst and stable in the acidic medium. Among them, the GaPd2 nanoparticles required only 24.3 mV overpotential to achieve the 10 mA/cm2 current density, which is outstanding most of the Pt based nanomaterials. Also, cycling tests for 10000-cycle CV sweep (−0.3 to 0.2 vs. RHE) and durability test for 24 hours were applied, the GaPd2 catalysts exhibit similar i-V curves and stable current densities to those obtained in the initial tests. We further evaluate the mass activities of the GaPd2 catalysts, and it is fascinating that the GaPd2 polyhedrons, nanoparticles and nanowires achieved factors of 3.7, 5 and 2.3 enhancement in mass activity at -0.1 V vs. RHE compared with the commercial Pd black catalyst.
Sub-1 nm PtSn nanosheets of 0.6 to 0.9 nm in thickness were syntheiszed via a solution colloidal method and were applied as electrooxidation catalysts MOR and EOR in alkaline and acid environments. Owing to the specific structural and compositional characteristics, the as-prepared PtSn nanosheets exhibits superior activity and durability relative to commercial Pt black and Pt/carbon catalysts. PtSn nanosheets not only exhibit an outstanding mass activity in MOR (871.6 mA mg Pt -1), which is 2.3 times (371 mA mg Pt -1) and 10.1 times (86.1 mA mg Pt -1) higher than that of commercial Pt/carbon and Pt black respectivly, but also display an mass activity in EOR ( 673.6 mA mg Pt -1) with 5.3 times higher commercial Pt black (127.7 mA mg Pt -1) and 2.3 times higher than commercial Pt/C catalyst (295 mA mg Pt -1). The reported value is the highest actitvity in both MOR and EOR exmainations compared to the reported PtSn-based electorcatalysts. The improved performance may be due to the highly-reactive exposed (111) facet sites resulted from its sub-1nm 2D sheet like morphology.
Chapter 1.
1. Zhu, C. Z.; Du, D.; Eychmuller, A.; Lin, Y. H., Engineering Ordered and Nonordered Porous Noble Metal Nanostructures: Synthesis, Assembly, and Their Applications in Electrochemistry. Chem. Rev. 2015, 115 (16), 8896-8943.
2. Duan, S. B.; Wang, R. M., Bimetallic nanostructures with magnetic and noble metals and their physicochemical applications. Prog. Nat. Sci-Mater. 2013, 23 (2), 113-126.
3. Wu, B. H.; Zheng, N. F., Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications. Nano Today 2013, 8 (2), 168-197.
4. Qu, J. L.; Ye, F.; Chen, D.; Feng, Y.; Yao, Q. F.; Liu, H.; Xie, J. P.; Yang, J., Platinum-based heterogeneous nanomaterials via wet-chemistry approaches toward electrocatalytic applications. Adv. Colloid Interface 2016, 230, 29-53.
5. Sun, Y. H.; Yang, X. Z.; Zhao, H. F.; Wang, R. M., Non-symmetric hybrids of noble metal-semiconductor: Interplay of nanoparticles and nanostructures in formation dynamics and plasmonic applications. Prog. Nat. Sci-Mater. 2017, 27 (2), 157-168.
6. Zaleska-Medynska, A.; Marchelek, M.; Diak, M.; Grabowska, E., Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties. Adv. Colloid Interface 2016, 229, 80-107.
7. Zhang, G. L.; Huang, C. D.; Qin, R. J.; Shao, Z. C.; An, D.; Zhang, W.; Wang, Y. X., Uniform Pd-Pt alloy nanoparticles supported on graphite nanoplatelets with high electrocatalytic activity towards methanol oxidation. J. Mater. Chem. A 2015, 3 (9), 5204-5211.
8. Azenha, C. S. R.; Mateos-Pedrero, C.; Queiros, S.; Concepcion, P.; Mendes, A., Innovative ZrO2-supported CuPd catalysts for the selective production of hydrogen from methanol steam reforming. Appl. Catal. B-Environ. 2017, 203, 400-407.
9. Lucci, F. R.; Liu, J. L.; Marcinkowski, M. D.; Yang, M.; Allard, L. F.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H., Selective hydrogenation of 1,3-butadiene on platinum-copper alloys at the single-atom limit. Nat. Commun. 2015, 6, 8550.
10. Xu, Y.; Chen, L.; Wang, X. C.; Yao, W. T.; Zhang, Q., Recent advances in noble metal based composite nanocatalysts: colloidal synthesis, properties, and catalytic applications. Nanoscale 2015, 7 (24), 10559-10583.
11. Robb, D. T.; Privman, V., Model of nanocrystal formation in solution by burst nucleation and diffusional growth. Langmuir 2008, 24 (1), 26-35.
12. Carey, G. H.; Abdelhady, A. L.; Ning, Z. J.; Thon, S. M.; Bakr, O. M.; Sargent, E. H., Colloidal Quantum Dot Solar Cells. Chem. Rev. 2015, 115 (23), 12732-12763.
13. Talapin, D. V.; Rogach, A. L.; Haase, M.; Weller, H., Evolution of an ensemble of nanoparticles in a colloidal solution: Theoretical study. J. Phys. Chem. B 2001, 105 (49), 12278-12285.
14. Lokhande, A. C.; Gurav, K. V.; Jo, E.; Lokhande, C. D.; Kim, J. H., Chemical synthesis of Cu2SnS3 (CTS) nanoparticles: A status review. J. Alloy Compd. 2016, 656, 295-310.
15. Huang, X. Q.; Li, Y. J.; Li, Y. J.; Zhou, H. L.; Duan, X. F.; Huang, Y., Synthesis of PtPd Bimetal Nanocrystals with Controllable Shape, Composition, and Their Tunable Catalytic Properties. Nano Lett. 2012, 12 (8), 4265-4270.
16. Yang, S. C.; Peng, Z. M.; Yang, H., Platinum Lead Nanostructures: Formation, Phase Behavior, and Electrocatalytic Properties. Adv. Funct. Mater. 2008, 18 (18), 2745-2753.
17. Fan, Z. X.; Bosman, M.; Huang, X.; Huang, D.; Yu, Y.; Ong, K. P.; Akimov, Y. A.; Wu, L.; Li, B.; Wu, J.; Huang, Y.; Liu, Q.; Png, C. E.; Gan, C. L.; Yang, P. D.; Zhang, H., Stabilization of 4H hexagonal phase in gold nanoribbons. Nat. Commun. 2015, 6.
18. Peng, Z. M.; You, H. J.; Yang, H., Composition-Dependent Formation of Platinum Silver Nanowires. Acs Nano 2010, 4 (3), 1501-1510.
Chapter 2.
1. Zeng, M.; Li, Y. G., Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2015, 3 (29), 14942-14962.
2. Lv, H. F.; Xi, Z.; Chen, Z. Z.; Guo, S. J.; Yu, Y. S.; Zhu, W. L.; Li, Q.; Zhang, X.; Pan, M.; Lu, G.; Mu, S. C.; Sun, S. H., A New Core/Shell NiAu/Au Nanoparticle Catalyst with Pt-like Activity for Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2015, 137 (18), 5859-5862.
3. Fei, H. L.; Dong, J. C.; Arellano-Jimenez, M. J.; Ye, G. L.; Kim, N. D.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M.; Yacaman, M. J.; Ajayan, P. M.; Chen, D. L.; Tour, J. M., Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 2015, 6, 8668.
4. Koenigsmann, C.; Wong, S. S., One-dimensional noble metal electrocatalysts: a promising structural paradigm for direct methanol fuel cells. Energy Environ. Sci. 2011, 4 (4), 1161-1176.
5. Kong, D. S.; Cha, J. J.; Wang, H. T.; Lee, H. R.; Cui, Y., First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 2013, 6 (12), 3553-3558.
6. Asano, M.; Kawamura, R.; Sasakawa, R.; Todoroki, N.; Wadayama, T., Oxygen Reduction Reaction Activity for Strain-Controlled Pt-Based Model Alloy Catalysts: Surface Strains and Direct Electronic Effects Induced by Alloying Elements. Acs Catal. 2016, 6 (8), 5285-5289.
7. Zhao, X. Y.; Luo, B. B.; Long, R.; Wang, C. M.; Xiong, Y. J., Composition-dependent activity of Cu-Pt alloy nanocubes for electrocatalytic CO2 reduction. J. Mater. Chem. A 2015, 3 (8), 4134-4138.
8. Hernandez-Fernandez, P.; Masini, F.; McCarthy, D. N.; Strebel, C. E.; Friebel, D.; Deiana, D.; Malacrida, P.; Nierhoff, A.; Bodin, A.; Wise, A. M.; Nielsen, J. H.; Hansen, T. W.; Nilsson, A.; Stephens, I. E. L.; Chorkendorff, I., Mass-selected nanoparticles of PtxY as model catalysts for oxygen electroreduction. Nat. Chem. 2014, 6 (8), 732-738.
9. Chang, F. F.; Shan, S. Y.; Petkov, V.; Skeete, Z.; Lu, A. L.; Ravid, J.; Wu, J. F.; Luo, J.; Yu, G.; Ren, Y.; Zhong, C. J., Composition Tunability and (111)-Dominant Facets of Ultrathin Platinum-Gold Alloy Nanowires toward Enhanced Electrocatalysis. J. Am. Chem. Soc. 2016, 138 (37), 12166-12175.
10. Cui, R. J.; Mei, L.; Han, G. J.; Chen, J. Y.; Zhang, G. H.; Quan, Y.; Gu, N.; Zhang, L.; Fang, Y.; Qian, B.; Jiang, X. F.; Han, Z. D., Facile Synthesis of Nanoporous Pt-Y alloy with Enhanced Electrocatalytic Activity and Durability. Scientific reports 2017, 7.
11. Antolini, E., Platinum-based ternary catalysts for low temperature fuel cells Part I. Preparation methods and structural characteristics. Appl. Catal. B-Environ. 2007, 74 (3-4), 324-336.
12. Pandey, B.; Cox, C. B.; Thapa, P. S.; Ito, T., Potentiometric Response Characteristics of Oxide-Coated Gallium Electrodes in Aqueous Solutions. Electrochim. Acta 2014, 142, 378-385.
13. Pandey, B.; Thapa, P. S.; Higgins, D. A.; Ito, T., Formation of Self-Organized Nanoporous Anodic Oxide from Metallic Gallium. Langmuir 2012, 28 (38), 13705-13711.
14. Wei, C.; Bard, A. J.; Kapui, I.; Nagy, G.; Toth, K., Scanning electrochemical microscopy .32. Gallium ultramicroelectrodes and their application in ion-selective probes. Anal. Chem. 1996, 68 (15), 2651-2655.
15. Kumar, V. B.; Gedanken, A.; Kimmel, G.; Porat, Z., Ultrasonic cavitation of molten gallium: Formation of micro- and nano-spheres. Ultrasonics sonochemistry 2014, 21 (3), 1166-1173.
16. Kumar, V. B.; Koltypin, Y.; Gedanken, A.; Porat, Z., Ultrasonic cavitation of molten gallium in water: entrapment of organic molecules in gallium microspheres. J. Mater. Chem. A 2014, 2 (5), 1309-1317.
17. Kumar, V. B.; Perelshtein, I.; Kimmel, G.; Porat, Z.; Gedanken, A., Reduction of metallic ions by molten gallium under ultrasonic irradiation and interactions between the formed metals and the gallium. J. Alloy Compd. 2015, 637, 538-544.
18. Kumar, V. B.; Sanetuntikul, J.; Ganesan, P.; Porat, Z.; Shanmugam, S.; Gedanken, A., Sonochemical Formation of Ga-Pt Intermetallic Nanoparticles Embedded in Graphene and its Potential Use as an Electrocatalyst. Electrochim. Acta 2016, 190, 659-667.
19. Pu, Z. H.; Wei, S. Y.; Chen, Z. B.; Mu, S. C., Flexible molybdenum phosphide nanosheet array electrodes for hydrogen evolution reaction in a wide pH range. Appl. Catal. B-Environ. 2016, 196, 193-198.
20. Luo, S. P.; Shen, P. K., Concave Platinum-Copper Octopod Nanoframes Bounded with Multiple High Index Facets for Efficient Electrooxidation Catalysis. Acs Nano 2017, 11 (12), 11946-11953.
21. Popczun, E. J.; Read, C. G.; Roske, C. W.; Lewis, N. S.; Schaak, R. E., Highly Active Electrocatalysis of the Hydrogen Evolution Reaction by Cobalt Phosphide Nanoparticles. Angew. Chem. Int. Ed. 2014, 53 (21), 5427-5430.
22. Xu, G. R.; Rai, J.; Yao, L.; Xue, Q.; Jiang, J. X.; Zeng, J. H.; Chen, Y.; Lee, J. M., Polyallylamine-Functionalized Platinum Tripods: Enhancement of Hydrogen Evolution Reaction by Proton Carriers. Acs Catal. 2017, 7 (1), 452-458.
23. Massalski, T. B.; Okamoto, H.; Subramanian, P. R.; Kacprzak, L., Binary Alloy Phase Diagrams, 2nd edition. ASM International,. Materials Park, OH, USA 1990.
24. Jiang, Z.; Zhang, Z. Y.; Shangguan, W. F.; Isaacs, M. A.; Durndell, L. J.; Parlett, C. M. A.; Lee, A. F., Photodeposition as a facile route to tunable Pt photocatalysts for hydrogen production: on the role of methanol. Catal. Sci. Technol. 2016, 6 (1), 81-88.
25. Elezovic, N. R.; Radmilovic, V. R.; Kovac, J.; Babic, B. M.; Gajic-Krstajic, L. M.; Krstajic, N. V., Pt nanoparticles on tin oxide based support as a beneficial catalyst for oxygen reduction in alkaline solutions. Rsc Adv. 2015, 5 (21), 15923-15929.
26. Wang, F. F.; Wang, C.; Liu, R. Q.; Tian, D.; Li, N., Experimental Study on the Preparation of Ag Nanoparticle Doped Fullerenol for Lithium Ion Battery Application. J. Phys. Chem. C 2012, 116 (19), 10461-10467.
27. Gao, J.; Liu, F.; Liu, Y. L.; Ma, N.; Wang, Z. Q.; Zhang, X., Environment-Friendly Method To Produce Graphene That Employs Vitamin C and Amino Acid. Chem. Mater. 2010, 22 (7), 2213-2218.
28. Suarez-Vazquez, S. I.; Limon-Pozos, A. C.; Campos-Badillo, A.; Fajardo, G.; Cruz-Lopez, A., Influence of electronic and optical properties of GaN nanoparticles as potential electrocatalyst in hydrogen production. Mat. Sci. Semicon. Proc. 2017, 64, 124-129.
29. Aoki, Y.; Wiemann, C.; Feyer, V.; Kim, H. S.; Schneider, C. M.; Ill-Yoo, H.; Martin, M., Bulk mixed ion electron conduction in amorphous gallium oxide causes memristive behaviour. Nat. Commun. 2014, 5.
30. Carli, R.; Bianchi, C. L., Xps Analysis of Gallium Oxides. Appl. Surf. Sci. 1994, 74 (1), 99-102.
31. Yarema, M.; Worle, M.; Rossell, M. D.; Erni, R.; Caputo, R.; Protesescu, L.; Kravchyk, K. V.; Dirin, D. N.; Lienau, K.; von Rohr, F.; Schilling, A.; Nachtegaal, M.; Kovalenko, M. V., Monodisperse Colloidal Gallium Nanoparticles: Synthesis, Low Temperature Crystallization, Surface Plasmon Resonance and Li-Ion Storage. J. Am. Chem. Soc. 2014, 136 (35), 12422-12430.
32. Wang, D. S.; Li, Y. D., Effective Octadecylamine System for Nanocrystal Synthesis. Inorganic chemistry 2011, 50 (11), 5196-5202.
33. Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M.; Chi, M. F.; More, K. L.; Li, Y. D.; Markovic, N. M.; Somorjai, G. A.; Yang, P. D.; Stamenkovic, V. R., Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces. Science 2014, 343 (6177), 1339-1343.
34. Komatsu, T.; Hyodo, S.; Yashima, T., Catalytic properties of Pt-Ge intermetallic compounds in the hydrogenation of 1,3-butadiene. J. Phys. Chem. B 1997, 101 (28), 5565-5572.
35. Xu, C.; Sritharan, T.; Mhaisalkar, S. G.; Srinivasan, M.; Zhang, S., An XPS study of Al2Au and AlAu4 intermetallic oxidation. Appl. Surf. Sci. 2007, 253 (14), 6217-6221.
36. Cara, C.; Musinu, A.; Mameli, V.; Ardu, A.; Niznansky, D.; Bursik, J.; Scorciapino, M. A.; Manzo, G.; Cannas, C., Dialkylamide as Both Capping Agent and Surfactant in a Direct Solvothermal Synthesis of Magnetite and Titania Nanoparticles. Cryst. Growth Des. 2015, 15 (5), 2364-2372.
37. Wei, Y. X.; Zhang, C. H.; Chang, Q.; Wang, X. Z.; Niu, L. W.; Xu, J.; Yang, Y.; Li, Y. W., Synthesis of monodisperse iron oxide nanoparticles: Effect of temperature, time, solvent, and surfactant. Inorg. Nano-Met. Chem. 2017, 47 (10), 1375-1379.
38. Xia, L. G.; Li, J. H.; Bai, J.; Li, L. S.; Chen, S.; Zhou, B. X., BiVO4 Photoanode with Exposed (040) Facets for Enhanced Photoelectrochemical Performance. Nano-Micro Lett. 2018, 10 (1).
39. Wang, Q.; Zhao, Q.; Su, Y. G.; Zhang, G.; Xu, G. R.; Li, Y. J.; Liu, B. C.; Zheng, D. F.; Zhang, J., Hierarchical carbon and nitrogen adsorbed PtNiCo nanocomposites with multiple active sites for oxygen reduction and methanol oxidation reactions. J. Mater. Chem. A 2016, 4 (31), 12296-12307.
40. Zhao, S. L.; Wang, Y.; Zhang, Q. H.; Li, Y. F.; Gu, L.; Dai, Z. H.; Liu, S. L.; Lan, Y. Q.; Han, M.; Bao, J. C., Two-dimensional nanostructures of non-layered ternary thiospinels and their bifunctional electrocatalytic properties for oxygen reduction and evolution: the case of CuCo2S4 nanosheets. Inorg. Chem. Front. 2016, 3 (12), 1501-1509.
41. Li, Q.; Wu, L. H.; Wu, G.; Su, D.; Lv, H. F.; Zhang, S.; Zhu, W. L.; Casimir, A.; Zhu, H. Y.; Mendoza-Garcia, A.; Sun, S. H., New Approach to Fully Ordered fct-FePt Nanoparticles for Much Enhanced Electrocatalysis in Acid. Nano Lett. 2015, 15 (4), 2468-2473.
42. Dai, L.; Zhao, Y.; Qin, Q.; Zhao, X. J.; Xu, C. F.; Zheng, N. F., Carbon-Monoxide-Assisted Synthesis of Ultrathin PtCu Alloy Nanosheets and Their Enhanced Catalysis. Chemnanomat. 2016, 2 (8), 776-780.
43. Conway, B. E.; Tilak, B. V., Interfacial processes involving electrocatalytic evolution and oxidation of H-2, and the role of chemisorbed H. Electrochim. Acta 2002, 47 (22-23), 3571-3594.
44. Bonde, J.; Moses, P. G.; Jaramillo, T. F.; Norskov, J. K.; Chorkendorff, I., Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss. 2008, 140, 219-231.
45. Bai, S.; Wang, C. M.; Deng, M. S.; Gong, M.; Bai, Y.; Jiang, J.; Xiong, Y. J., Surface Polarization Matters: Enhancing the Hydrogen-Evolution Reaction by Shrinking Pt Shells in Pt-Pd-Graphene Stack Structures. Angew. Chem. Int. Ed. 2014, 53 (45), 12120-12124.
46. Du, Y. X.; Ni, K.; Zhai, Q. X.; Yun, Y. P.; Xu, Y. J.; Sheng, H. T.; Zhu, Y. W.; Zhu, M. Z., Facile air oxidative induced dealloying of hierarchical branched PtCu nanodendrites with enhanced activity for hydrogen evolution. Appl. Catal. A-Gen. 2018, 557, 72-78.
47. Jiang, B. B.; Tang, Z. Y.; Liao, F.; Lin, H. P.; Lu, S. K.; Li, Y. Y.; Shao, M. W., Powerful synergy: efficient Pt-Au-Si nanocomposites as state-of-the-art catalysts for electrochemical hydrogen evolution. J. Mater. Chem. A 2017, 5 (41), 21903-21908.
48. Xu, X. Y.; Dong, X. F.; Bao, Z. J.; Wang, R.; Hu, J. G.; Zeng, H. B., Three electron channels toward two types of active sites in MoS2@Pt nanosheets for hydrogen evolution. J. Mater. Chem. A 2017, 5 (43), 22654-22661.
49. Wang, C. H.; Hu, F.; Yang, H. C.; Zhang, Y. J.; Lu, H.; Wang, Q. B., 1.82 wt.% Pt/N, P co-doped carbon overwhelms 20 wt.% Pt/C as a high-efficiency electrocatalyst for hydrogen evolution reaction. Nano Res. 2017, 10 (1), 238-246.
50. Lin, X. X.; Wang, A. J.; Fang, K. M.; Yuan, J. H.; Feng, J. J., One-Pot Seedless Aqueous Synthesis of Reduced Graphene Oxide (rGO)-Supported Core Shell Pt@Pd Nanoflowers as Advanced Catalysts for Oxygen Reduction and Hydrogen Evolution. Acs Sustain. Chem. Eng. 2017, 5 (10), 8675-8683.
51. Zhang, H. F.; Ren, W. N.; Guan, C.; Cheng, C. W., Pt decorated 3D vertical graphene nanosheet arrays for efficient methanol oxidation and hydrogen evolution reactions. J. Mater. Chem. A 2017, 5 (41), 22004-22011.
52. Jiang, L. Y.; Huang, X. Y.; Wang, A. J.; Li, X. S.; Yuan, J. H.; Feng, J. J., Facile solvothermal synthesis of Pt76Co24 nanomyriapods for efficient electrocatalysis. J. Mater. Chem. A 2017, 5 (21), 10554-10560.
53. Huang, R. J.; Sun, Z. T.; Chen, S.; Wu, S. Y.; Shen, Z. Q.; Wu, X. J.; Zeng, J., Pt-Cu hierarchical quasi great dodecahedrons with abundant twinning defects for hydrogen evolution. Chem. Commun. 2017, 53 (51).
54. Ying, J.; Jiang, G. P.; Cano, Z. P.; Han, L.; Yang, X. Y.; Chen, Z. W., Nitrogen-doped hollow porous carbon polyhedrons embedded with highly dispersed Pt nanoparticles as a highly efficient and stable hydrogen evolution electrocatalyst. Nano Energy 2017, 40, 88-94.
55. Xiao, M. S.; Cheng, R.; Hao, M. F.; Zhou, M.; Miao, Y. Q., Onsite Substitution Synthesis of Ultrathin Ni Nanofilms Loading Ultrafine Pt Nanoparticles for Hydrogen Evolution. Acs Appl. Mater. Inter. 2015, 7 (47), 26101-26107.
56. Wang, S.; Yang, G.; Yang, S. C., Pt-Frame@Ni quasi Core-Shell Concave Octahedral PtNi3 Bimetallic Nanocrystals for Electrocatalytic Methanol Oxidation and Hydrogen Evolution (vol 119, pg 27938, 2015). J. Phys. Chem. C 2016, 120 (1), 802-802.
57. Chen, J. T.; Yang, Y.; Su, J. W.; Jiang, P.; Xia, G. L.; Chen, Q. W., Enhanced Activity for Hydrogen Evolution Reaction over CoFe Catalysts by Alloying with Small Amount of Pt. Acs Appl. Mater. Inter. 2017, 9 (4), 3596-3601.
58. Cao, Z. M.; Chen, Q. L.; Zhang, J. W.; Li, H. Q.; Jiang, Y. Q.; Shen, S. Y.; Fu, G.; Lu, B. A.; Xie, Z. X.; Zheng, L. S., Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction. Nat. Commun. 2017, 8, 15131.
59. Yin, H. J.; Zhao, S. L.; Zhao, K.; Muqsit, A.; Tang, H. J.; Chang, L.; Zhao, H. J.; Gao, Y.; Tang, Z. Y., Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 2015, 6, 6430.
60. Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E., Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2013, 135 (25), 9267-9270.
61. McKone, J. R.; Sadtler, B. F.; Werlang, C. A.; Lewis, N. S.; Gray, H. B., Ni-Mo Nanopowders for Efficient Electrochemical Hydrogen Evolution. Acs Catal. 2013, 3 (2), 166-169.
62. Liu, X. R.; Zhang, M.; Yang, T. T.; Wang, L. N.; Zhu, H.; Wang, S. L.; Du, M. L., Carbon nanofibers as nanoreactors in the construction of PtCo alloy carbon core-shell structures for highly efficient and stable water splitting. Mater. Design 2016, 109, 162-170.
63. Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y., Controllable Disorder Engineering in Oxygen-Incorporated MoS2 Ultrathin Nanosheets for Efficient Hydrogen Evolution (vol 135, pg 17881, 2013). J. Am. Chem. Soc. 2014, 136 (4), 1680-1680.
64. Huang, X. Q.; Zhu, E. B.; Chen, Y.; Li, Y. J.; Chiu, C. Y.; Xu, Y. X.; Lin, Z. Y.; Duan, X. F.; Huang, Y., A Facile Strategy to Pt3Ni Nanocrystals with Highly Porous Features as an Enhanced Oxygen Reduction Reaction Catalyst. Adv. Mater. 2013, 25 (21), 2974-2979.
65. Ma, Y. X.; Yin, L. S.; Cao, G. J.; Huang, Q. L.; He, M. S.; Wei, W. X.; Zhao, H.; Zhang, D. G.; Wang, M. Y.; Yang, T., Pt-Pd Bimetal Popcorn Nanocrystals: Enhancing the Catalytic Performance by Combination Effect of Stable Multipetals Nanostructure and Highly Accessible Active Sites. Small 2018, 14 (14).
66. Bhowmik, T.; Kundu, M. K.; Barman, S., Palladium Nanoparticle-Graphitic Carbon Nitride Porous Synergistic Catalyst for Hydrogen Evolution/Oxidation Reactions over a Broad Range of pH and Correlation of Its Catalytic Activity with Measured Hydrogen Binding Energy. Acs Catal. 2016, 6 (3), 1929-1941.
67. Cheng, N. C.; Stambula, S.; Wang, D.; Banis, M. N.; Liu, J.; Riese, A.; Xiao, B. W.; Li, R. Y.; Sham, T. K.; Liu, L. M.; Botton, G. A.; Sun, X. L., Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 2016, 7.
Chapter 3.
1. Hosseini, S. E.; Wahid, M. A., Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew. Sust. Energ. Rev. 2016, 57, 850-866.
2. Anantharaj, S.; Karthick, K.; Kundu, S., NiTe2 Nanowire Outperforms Pt/C in High-Rate Hydrogen Evolution at Extreme pH Conditions. Inorg. Chem. 2018, 57 (6), 3082-3096.
3. Wu, Y. Y.; Liu, Y. P.; Li, G. D.; Zou, X.; Lian, X. R.; Wang, D. J.; Sun, L.; Asefa, T.; Zou, X. X., Efficient electrocatalysis of overall water splitting by ultrasmall NixCo3-xS4 coupled Ni3S2 nanosheet arrays. Nano Energy 2017, 35, 161-170.
4. Peng, Z.; Jia, D. S.; Al-Enizi, A. M.; Elzatahry, A. A.; Zheng, G. F., From Water Oxidation to Reduction: Homologous Ni-Co Based Nanowires as Complementary Water Splitting Electrocatalysts. Adv. Energy Mater. 2015, 5 (9), 1402031.
5. Wu, C.; Yang, Y. J.; Dong, D.; Zhang, Y. H.; Li, J. H., In Situ Coupling of CoP Polyhedrons and Carbon Nanotubes as Highly Efficient Hydrogen Evolution Reaction Electrocatalyst. Small 2017, 13 (15), 1602873.
6. Norskov, J. K.; Christensen, C. H., Chemistry - Toward efficient hydrogen production at surfaces. Science 2006, 312 (5778), 1322-1323.
7. Wu, H. B.; Xia, B. Y.; Yu, L.; Yu, X. Y.; Lou, X. W., Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nat. Commun. 2015, 6, 6512.
8. Kotrel, S.; Br¨auninger, S., Handbook of Heterogeneous Catalysis 2008, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 1936-1954.
9. Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I. B.; Norskov, J. K., Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5 (11), 909-913.
10. Sun, Y. L.; Delucchi, M.; Ogden, J., The impact of widespread deployment of fuel cell vehicles on platinum demand and price. Int. J. Hydrogen Energy 2011, 36 (17), 11116-11127.
11. Cappillino, P. J.; Sugar, J. D.; Hekmaty, M. A.; Jacobs, B. W.; Stavila, V.; Kotula, P. G.; Chames, J. M.; Yang, N. Y.; Robinson, D. B., Nanoporous Pd alloys with compositionally tunable hydrogen storage properties prepared by nanoparticle consolidation. J. Mater. Chem. 2012, 22 (28), 14013-14022.
12. Lee, J. H.; Kang, W. S.; Najeeb, C. K.; Choi, B. S.; Choi, S. W.; Lee, H. J.; Lee, S. S.; Kim, J. H., A hydrogen gas sensor using single-walled carbon nanotube Langmuir-Blodgett films decorated with palladium nanoparticles. Sensor Actuat. B-Chem. 2013, 188, 169-175.
13. Zhang, L. L.; Chang, Q. W.; Chen, H. M.; Shao, M. H., Recent advances in palladium-based electrocatalysts for fuel cell reactions and hydrogen evolution reaction. Nano Energy 2016, 29, 198-219.
14. Xiong, Y. J.; McLellan, J. M.; Chen, J. Y.; Yin, Y. D.; Li, Z. Y.; Xia, Y. N., Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties. J. Am. Chem. Soc. 2005, 127 (48), 17118-17127.
15. Suzuki, A., Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995-1998. J. Organomet. Chem. 1999, 576 (1-2), 147-168.
16. Chinchilla, R.; Najera, C., The sonogashira reaction: A booming methodology in synthetic organic chemistry. Chem. Rev. 2007, 107 (3), 874-922.
17. Adams, B. D.; Chen, A. C., The role of palladium in a hydrogen economy. Mater. Today 2011, 14 (6), 282-289.
18. Chen, A. C.; Ostrom, C., Palladium-Based Nanomaterials: Synthesis and Electrochemical Applications. Chem. Rev. 2015, 115 (21), 11999-12044.
19. Xiong, Y. J.; Xia, Y. N., Shape-controlled synthesis of metal nanostructures: The case of palladium. Adv. Mater. 2007, 19 (20), 3385-3391.
20. Mazumder, V.; Chi, M. F.; Mankin, M. N.; Liu, Y.; Metin, O.; Sun, D. H.; More, K. L.; Sun, S. H., A Facile Synthesis of MPd (M = Co, Cu) Nanoparticles and Their Catalysis for Formic Acid Oxidation. Nano Lett. 2012, 12 (2), 1102-1106.
21. Zhang, J. F.; Wan, L.; Liu, L.; Deng, Y. D.; Zhong, C.; Hu, W. B., PdPt bimetallic nanoparticles enabled by shape control with halide ions and their enhanced catalytic activities. Nanoscale 2016, 8 (7), 3962-3972.
22. Yang, X. C.; Pachfule, P.; Chen, Y.; Tsumori, N.; Xu, Q., Highly efficient hydrogen generation from formic acid using a reduced graphene oxide-supported AuPd nanoparticle catalyst. Chem. Commun. 2016, 52 (22), 4171-4174.
23. Sun, D. H.; Li, P. Y.; Yang, B.; Xu, Y.; Huang, J. L.; Li, Q. B., Monodisperse AgPd alloy nanoparticles as a highly active catalyst towards the methanolysis of ammonia borane for hydrogen generation. Rsc Adv. 2016, 6 (107), 105940-105947.
24. Zhang, Z. Y.; More, K. L.; Sun, K.; Wu, Z. L.; Li, W. Z., Preparation and Characterization of PdFe Nanoleaves as Electrocatalysts for Oxygen Reduction Reaction. Chem. Mater. 2011, 23 (6), 1570-1577.
25. Zhang, Q. F.; Wu, X. P.; Li, Y. K.; Chai, R. J.; Zhao, G. F.; Wang, C. Z.; Gong, X. Q.; Liu, Y.; Lu, Y., High-Performance PdNi Nanoalloy Catalyst in Situ Structured on Ni Foam for Catalytic Deoxygenation of Coalbed Methane: Experimental and DFT Studies. Acs Catal. 2016, 6 (9), 6236-6245.
26. Zhou, M.; Wang, H. L.; Vara, M.; Hood, Z. D.; Luo, M.; Yang, T. H.; Bao, S. X.; Chi, M. F.; Xiao, P.; Zhang, Y. H.; Xia, Y. N., Quantitative Analysis of the Reduction Kinetics Responsible for the One-Pot Synthesis of Pd-Pt Bimetallic Nanocrystals with Different Structures. J. Am. Chem. Soc. 2016, 138 (37), 12263-12270.
27. Wu, L. P.; Liu, Z. Y.; Xu, M.; Zhang, J.; Yang, X. Y.; Huang, Y. D.; Lin, J.; Sun, D. M.; Xu, L.; Tang, Y. W., Facile synthesis of ultrathin Pd-Pt alloy nanowires as highly active and durable catalysts for oxygen reduction reaction. Int. J. Hydrogen Energy 2016, 41 (16), 6805-6813.
28. Wang, L.; Yamauchi, Y., Metallic Nanocages: Synthesis of Bimetallic Pt-Pd Hollow Nanoparticles with Dendritic Shells by Selective Chemical Etching. J. Am. Chem. Soc. 2013, 135 (45), 16762-16765.
29. Li, H. H.; Ma, S. Y.; Fu, Q. Q.; Liu, X. J.; Wu, L.; Yu, S. H., Scalable Bromide-Triggered Synthesis of Pd@Pt Core-Shell Ultrathin Nanowires with Enhanced Electrocatalytic Performance toward Oxygen Reduction Reaction. J. Am. Chem. Soc. 2015, 137 (24), 7862-7868.
30. Xia, Y. N.; Xia, X. H.; Peng, H. C., Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermodynamic versus Kinetic Products. J. Am. Chem. Soc. 2015, 137 (25), 7947-7966.
31. Kumar, V. B.; Gedanken, A.; Kimmel, G.; Porat, Z., Ultrasonic cavitation of molten gallium: Formation of micro- and nano-spheres. Ultrasonics sonochemistry 2014, 21 (3), 1166-1173.
32. Kumar, V. B.; Koltypin, Y.; Gedanken, A.; Porat, Z., Ultrasonic cavitation of molten gallium in water: entrapment of organic molecules in gallium microspheres. J. Mater. Chem. A 2014, 2 (5), 1309-1317.
33. Kumar, V. B.; Perelshtein, I.; Kimmel, G.; Porat, Z.; Gedanken, A., Reduction of metallic ions by molten gallium under ultrasonic irradiation and interactions between the formed metals and the gallium. J. Alloy Compd. 2015, 637, 538-544.
34. Mourdikoudis, S.; Liz-Marzan, L. M., Oleylamine in Nanoparticle Synthesis. Chem. Mater. 2013, 25 (9), 1465-1476.
35. K.Khalaff, K. S., Kristallstruktur von Pd5Ga2. J Less Common Met 1974, (37), 129-140.
36. M., S. Y., Handbook of Precious Metals. Hemisphere Publishing 1989.
37. Huang, C. S.; Zhang, S. L.; Liu, H. B.; Li, Y. J.; Cui, G. T.; Li, Y. L., Graphdiyne for high capacity and long-life lithium storage. Nano Energy 2015, 11, 481-489.
38. Hoshyargar, F.; Crawford, J.; O'Mullane, A. P., Galvanic Replacement of the Liquid Metal Galinstan. J. Am. Chem. Soc. 2017, 139 (4), 1464-1471.
39. Yamaguchi, A.; Mashima, Y.; Iyoda, T., Reversible Size Control of Liquid-Metal Nanoparticles under Ultrasonication. Angew. Chem. Int. Ed. 2015, 54 (43), 12809-12813.
40. Mayr, L.; Lorenz, H.; Armbruster, M.; Villaseca, S. A.; Luo, Y.; Cardoso, R.; Burkhardt, U.; Zemlyanov, D.; Haevecker, M.; Blume, R.; Knop-Gericke, A.; Klotzer, B.; Penner, S., The catalytic properties of thin film Pd-rich GaPd2 in methanol steam reforming. J. Catal. 2014, 309, 231-240.
41. Knight, M. W.; Coenen, T.; Yang, Y.; Brenny, B. J. M.; Losurdo, M.; Brown, A. S.; Everitt, H. O.; Polman, A., Gallium Plasmonics: Deep Subwavelength Spectroscopic Imaging of Single and Interacting Gallium Nanoparticles. Acs Nano 2015, 9 (2), 2049-2060.
42. Yarema, M.; Worle, M.; Rossell, M. D.; Erni, R.; Caputo, R.; Protesescu, L.; Kravchyk, K. V.; Dirin, D. N.; Lienau, K.; von Rohr, F.; Schilling, A.; Nachtegaal, M.; Kovalenko, M. V., Monodisperse Colloidal Gallium Nanoparticles: Synthesis, Low Temperature Crystallization, Surface Plasmon Resonance and Li-Ion Storage. J. Am. Chem. Soc. 2014, 136 (35), 12422-12430.
43. Lee, L. C.; Xiao, C. X.; Huang, W. Y.; Zhao, Y., Palladium-gold bimetallic nanoparticle catalysts prepared by "controlled release'' from metal-loaded interfacially cross-linked reverse micelles. New J. Chem. 2015, 39 (4), 2459-2466.
44. Jiao, N. M.; Li, Z. L.; Xia, C. G.; Liu, J. H., Palladium Nanoparticles Immobilized on Cross-Linked Polymeric Ionic Liquid Material: Application as Efficient and Recoverable Catalyst for the Hydrogenation of Nitroarenes. Chemistryselect 2017, 2 (16), 4545-4556.
45. Sun, D. D.; Si, L.; Fu, G. T.; Liu, C.; Sun, D. M.; Chen, Y.; Tang, Y. W.; Lu, T. H., Nanobranched porous palladium-tin intermetallics: One-step synthesis and their superior electrocatalysis towards formic acid oxidation. J. Power Sources 2015, 280, 141-146.
46. Shen, L. F.; Mao, S. J.; Li, J. Q.; Li, M. M.; Chen, P.; Li, H. R.; Chen, Z. R.; Wang, Y., PdZn intermetallic on a CN@ZnO hybrid as an efficient catalyst for the semihydrogenation of alkynols. J. Catal. 2017, 350, 13-20.
47. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S., Solar Water Splitting Cells. Chem. Rev. 2010, 110 (11), 6446-6473.
48. Chen, W. F.; Muckerman, J. T.; Fujita, E., Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem. Commun. 2013, 49 (79), 8896-8909.
49. Pang, C. L.; Lindsay, R.; Thornton, G., Structure of Clean and Adsorbate-Covered Single-Crystal Rutile TiO2 Surfaces. Chem. Rev. 2013, 113 (6), 3887-3948.
50. Ozawa, N.; Arboleda, N. B.; Nakanishi, H.; Kasai, H., First principles study of hydrogen atom adsorption and diffusion on Pd3Ag(111) surface and in its subsurface. Surf. Sci. 2008, 602 (4), 859-863.
51. Liu, X. R.; Zhang, M.; Yang, T. T.; Wang, L. N.; Zhu, H.; Wang, S. L.; Du, M. L., Carbon nanofibers as nanoreactors in the construction of PtCo alloy carbon core-shell structures for highly efficient and stable water splitting. Mater. Design 2016, 109, 162-170.
52. Zhou, M.; Kang, Y. Y.; Huang, K. K.; Shi, Z.; Xie, R. G.; Yang, W. S., Ultra-small nickel phosphide nanoparticles as a high-performance electrocatalyst for the hydrogen evolution reaction. Rsc Adv. 2016, 6 (78), 74895-74902.
53. Li, J.; Zheng, G. F., One-Dimensional Earth-Abundant Nanomaterials for Water-Splitting Electrocatalysts. Adv. Sci. 2017, 4 (3).
54. Liu, M. J.; Li, J. H., Cobalt Phosphide Hollow Polyhedron as Efficient Bifunctional Electrocatalysts for the Evolution Reaction of Hydrogen and Oxygen. Acs Appl. Mater. Inter. 2016, 8 (3), 2158-2165.
55. Fu, G. T.; Wu, K.; Lin, J.; Tang, Y. W.; Chen, Y.; Zhou, Y. M.; Lu, T. H., One-Pot Water-Based Synthesis of Pt-Pd Alloy Nanoflowers and Their Superior Electrocatalytic Activity for the Oxygen Reduction Reaction and Remarkable Methanol-Tolerant Ability in Acid Media. J. Phys. Chem. C 2013, 117 (19), 9826-9834.
56. Wang, A. L.; He, X. J.; Lu, X. F.; Xu, H.; Tong, Y. X.; Li, G. R., Palladium-Cobalt Nanotube Arrays Supported on Carbon Fiber Cloth as High-Performance Flexible Electrocatalysts for Ethanol Oxidation. Angew. Chem. Int. Ed. 2015, 54 (12), 3669-3673.
57. Li, M.; Wang, J. J.; Li, P.; Chang, K.; Li, C. L.; Wang, T.; Jiang, B.; Zhang, H. B.; Liu, H. M.; Yamauchi, Y.; Umezawa, N.; Ye, J. H., Mesoporous palladium-copper bimetallic electrodes for selective electrocatalytic reduction of aqueous CO2 to CO. J. Mater. Chem. A 2016, 4 (13), 4776-4782.
58. Na, H. Y.; Zhang, L.; Qiu, H. X.; Wu, T.; Chen, M. X.; Yang, N.; Li, L. Z.; Xing, F. B.; Gao, J. P., A two step method to synthesize palladium-copper nanoparticles on reduced graphene oxide and their extremely high electrocatalytic activity for the electrooxidation of methanol and ethanol. J. Power Sources 2015, 288, 160-167.
Chapter 4.
1. Bu, L. Z.; Guo, S. J.; Zhang, X.; Shen, X.; Su, D.; Lu, G.; Zhu, X.; Yao, J. L.; Guo, J.; Huang, X. Q., Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat. Commun. 2016, 7, 11850.
2. Gunji, T.; Tanabe, T.; Jeevagan, A. J.; Usui, S.; Tsuda, T.; Kaneko, S.; Saravanan, G.; Abe, H.; Matsumoto, F., Facile route for the preparation of ordered intermetallic Pt3Pb-PtPb core-shell nanoparticles and its enhanced activity for alkaline methanol and ethanol oxidation. J. Power Sources 2015, 273, 990-998.
3. Du, W. X.; Yang, G. X.; Wong, E.; Deskins, N. A.; Frenkel, A. I.; Su, D.; Teng, X. W., Platinum-Tin Oxide Core-Shell Catalysts for Efficient Electro-Oxidation of Ethanol. J. Am. Chem. Soc. 2014, 136 (31), 10862-10865.
4. Xiong, Z. P.; Li, S. M.; Xu, H.; Zhang, K.; Yan, B.; Du, Y. K., Newly Designed Ternary Metallic PtPdBi Hollow Catalyst with High Performance for Methanol and Ethanol Oxidation. Catalysts 2017, 7 (7).
5. Jiang, B.; Li, C.; Tang, J.; Takei, T.; Kim, J. H.; Ide, Y.; Henzie, J.; Tominaka, S.; Yamauchi, Y., Tunable‐Sized Polymeric Micelles and Their Assembly for the Preparation of Large Mesoporous Platinum Nanoparticles. Angew. Chem. Int. Ed. 2016, 55 (34), 10037-10041.
6. Jiang, B.; Li, C.; Malgras, V.; Imura, M.; Tominaka, S.; Yamauchi, Y., Mesoporous Pt nanospheres with designed pore surface as highly active electrocatalyst. Chem. Sci. 2016, 7 (2), 1575-1581.
7. Wang, H. S.; Jusys, Z.; Behm, R. J.; Abruna, H. D., New Insights into the Mechanism and Kinetics of Adsorbed CO Electrooxidation on Platinum: Online Mass Spectrometry and Kinetic Monte Carlo Simulation Studies. J. Phys. Chem. C 2012, 116 (20), 11040-11053.
8. Shao, M. H.; Adzic, R. R., Electrooxidation of ethanol on a Pt electrode in acid solutions: in situ ATR-SEIRAS study. Electrochim. Acta 2005, 50 (12), 2415-2422.
9. Chen, Q.; Yang, Y.; Cao, Z.; Kuang, Q.; Du, G.; Jiang, Y.; Xie, Z.; Zheng, L., Excavated cubic platinum–tin alloy nanocrystals constructed from ultrathin nanosheets with enhanced electrocatalytic activity. Angew. Chem. Int. Ed. 2016, 55 (31), 9021-9025.
10. Kwak, D.-H.; Lee, Y.-W.; Han, S.-B.; Hwang, E.-T.; Park, H.-C.; Kim, M.-C.; Park, K.-W., Ultrasmall PtSn alloy catalyst for ethanol electro-oxidation reaction. J. Power Sources 2015, 275, 557-562.
11. Zheng, L.; Xiong, L.; Sun, J.; Li, J.; Yang, S.; Xia, J., Capping agent free synthesis of PtSn bimetallic nanoparticles with enhanced electrocatalytic activity and lifetime over methanol oxidation. Catal. Commun. 2008, 9 (5), 624-629.
12. Peng, H. C.; Qi, W. H.; Wu, H. F.; He, J. T.; Li, Y. J.; Xie, H. P., One-pot synthesis of CuPt nanodendrites with enhanced activity towards methanol oxidation reaction. Rsc Adv. 2018, 8 (17), 9293-9298.
13. Liu, T. Y.; Wang, K.; Yuan, Q.; Shen, Z. B.; Wang, Y.; Zhang, Q. H.; Wang, X., Monodispersed sub-5.0 nm PtCu nanoalloys as enhanced bifunctional electrocatalysts for oxygen reduction reaction and ethanol oxidation reaction. Nanoscale 2017, 9 (9), 2963-2968.
14. Zhao, Y. G.; Liu, J. J.; Liu, C. G.; Wang, F.; Song, Y., Amorphous CuPt Alloy Nanotubes Induced by Na2S2O3 as Efficient Catalysts for the Methanol Oxidation Reaction. Acs Catal. 2016, 6 (7), 4127-4134.
15. Altarawneh, R. M.; Pickup, P. G., Pt and PtRu catalyst bilayers increase efficiencies for ethanol oxidation in proton exchange membrane electrolysis and fuel cells. J. Power Sources 2017, 366, 27-32.
16. Bin, D.; Ren, F. F.; Wang, H. W.; Zhang, K.; Yang, B. B.; Zhai, C. Y.; Zhu, M. S.; Yang, P.; Du, Y. K., Facile synthesis of PVP-assisted PtRu/RGO nanocomposites with high electrocatalytic performance for methanol oxidation. Rsc Adv. 2014, 4 (74), 39612-39618.
17. Chatterjee, M.; Chatterjee, A.; Ghosh, S.; Basumallick, I., Electro-oxidation of ethanol and ethylene glycol on carbon-supported nano-Pt and -PtRu catalyst in acid solution. Electrochim. Acta 2009, 54 (28), 7299-7304.
18. Liu, Z. L.; Su, F. B.; Zhang, X. H.; Tay, S. W., Preparation and Characterization of PtRu Nanoparticles Supported on Nitrogen-Doped Porous Carbon for Electrooxidation of Methanol. Acs Appl. Mater. Inter. 2011, 3 (10), 3824-3830.
19. Lu, S. L.; Eid, K.; Ge, D. H.; Guo, J.; Wang, L.; Wang, H. J.; Gu, H. W., One-pot synthesis of PtRu nanodendrites as efficient catalysts for methanol oxidation reaction. Nanoscale 2017, 9 (3), 1033-1039.
20. Wu, Y. N.; Liao, S. J.; Guo, H. F.; Hao, X. Y., High-performance Pd@PtRu/C catalyst for the anodic oxidation of methanol prepared by decorating Pd/C with a PtRu shell. J. Power Sources 2013, 224, 66-71.
21. Li, L.; Tian, C. X.; Yang, J. S.; Zhang, X. H.; Chen, J. H., One-pot synthesis of PtRh/beta-CD-CNTs for methanol oxidation. Int. J. Hydrogen Energy 2015, 40 (43), 14866-14874.
22. Lu, Q. Q.; Huang, J. S.; Han, C.; Sun, L. T.; Yang, X. R., Facile synthesis of composition-tunable PtRh nanosponges for methanol oxidation reaction. Electrochim. Acta 2018, 266, 305-311.
23. Shen, Y.; Gong, B.; Xiao, K. J.; Wang, L., In Situ Assembly of Ultrathin PtRh Nanowires to Graphene Nanosheets as Highly Efficient Electrocatalysts for the Oxidation of Ethanol. Acs Appl. Mater. Inter. 2017, 9 (4), 3535-3543.
24. Lee, Y. W.; Han, S. W.; Lee, K. Y., Site-selectively Pt-decorated PdPt bimetallic nanosheets characterized by electrocatalytic property for methanol oxidation. Mater Chem. Phys. 2018, 214, 201-208.
25. Liu, Y.; Chi, M. F.; Mazumder, V.; More, K. L.; Soled, S.; Henao, J. D.; Sun, S. H., Composition-Controlled Synthesis of Bimetallic PdPt Nanoparticles and Their Electro-oxidation of Methanol. Chemistry of Materials 2011, 23 (18), 4199-4203.
26. Pan, Y. X.; Guo, X. Y.; Li, M. Z.; Liang, Y. H.; Wu, Y. P.; Wen, Y.; Yang, H. F., Construction of Dandelion-like Clusters by PtPd Nanoseeds for Elevating Ethanol Eletrocatalytic Oxidation. Electrochim. Acta 2015, 159, 40-45.
27. Qiu, P. T.; Lian, S. M.; Yang, G.; Yang, S. C., Halide ion-induced formation of single crystalline mesoporous PtPd bimetallic nanoparticles with hollow interiors for electrochemical methanol and ethanol oxidation reaction. Nano Res. 2017, 10 (3), 1064-1077.
28. Qiu, P.; Lian, S.; Yang, G.; Yang, S., Halide ion-induced formation of single crystalline mesoporous PtPd bimetallic nanoparticles with hollow interiors for electrochemical methanol and ethanol oxidation reaction. Nano Res. 2017, 10 (3), 1064-1077.
29. D'Villa-Silva, M.; Simoes, F. C.; de Souza, R. F. B.; Silva, J. C. M.; Santos, M. C., Comparative Studies of Oxygen Reduction Reaction and Ethanol Oxidation Reaction on PtSn/C and PtNi/C Catalysts. Ecs Transactions 2011, 41 (1), 1299-1306.
30. Jiang, Q. A.; Jiang, L. H.; Hou, H. Y.; Qi, J.; Wang, S. L.; Sun, G. Q., Promoting Effect of Ni in PtNi Bimetallic Electrocatalysts for the Methanol Oxidation Reaction in Alkaline Media: Experimental and Density Functional Theory Studies. J. Phys. Chem. C 2010, 114 (46), 19714-19722.
31. Wang, C. Z.; Zhang, Y.; Zhang, Y. J.; Xu, P.; Feng, C. M.; Chen, T.; Guo, T.; Yang, F. N.; Wang, Q.; Wang, J. X.; Shi, M. T.; Fan, L. Z.; Chen, S. W., Highly Ordered Hierarchical Pt and PtNi Nanowire Arrays for. Enhanced Electrocatalytic Activity toward Methanol Oxidation. Acs Appl. Mater. Inter. 2018, 10 (11), 9444-9450.
32. Xiu, R. P.; Zhang, F. F.; Wang, Z. H.; Yang, M.; Xia, J. F.; Gui, R. J.; Xia, Y. Z., Electrodeposition of PtNi bimetallic nanoparticles on three-dimensional graphene for highly efficient methanol oxidation. Rsc Adv. 2015, 5 (105), 86578-86583.
33. Yang, P.; Yuan, X.; Hu, H.; Liu, Y.; Zheng, H.; Yang, D.; Chen, L.; Cao, M.; Xu, Y.; Min, Y., Solvothermal Synthesis of Alloyed PtNi Colloidal Nanocrystal Clusters (CNCs) with Enhanced Catalytic Activity for Methanol Oxidation. Advanced Functional Materials 2018, 28 (1), 1704774.
34. Artyushkova, K.; Halevi, B.; Padilla, M.; Atanassov, P.; Baranova, E. A., Mechanistic Study of Electrooxidation of Ethanol on PtSn Nanoparticles in Alkaline and Acid Media. J. Electrochem. Soc. 2015, 162 (6), H345-H351.
35. Maya-Cornejo, J.; Carrera-Cerritos, R.; Sebastian, D.; Ledesma-Garcia, J.; Arriaga, L. G.; Arico, A. S.; Baglio, V., PtCu catalyst for the electro-oxidation of ethanol in an alkaline direct alcohol fuel cell. Int. J. Hydrogen Energy 2017, 42 (46), 27919-27928.
36. Adler, S. B., Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 2004, 104 (10), 4791-4843.
37. Liu, L.; Samjeske, G.; Nagamatsu, S.; Sekizawa, O.; Nagasawa, K.; Takao, S.; Imaizumi, Y.; Yamamoto, T.; Uruga, T.; Iwasawa, Y., Enhanced Oxygen Reduction Reaction Activity and Characterization of Pt-Pd/C Bimetallic Fuel Cell Catalysts with Pt-Enriched Surfaces in Acid Media. J. Phys. Chem. C 2012, 116 (44), 23453-23464.
38. Zhang, Z. Y.; Xin, L.; Sun, K.; Li, W. Z., Pd-Ni electrocatalysts for efficient ethanol oxidation reaction in alkaline electrolyte. Int. J. Hydrogen Energy 2011, 36 (20), 12686-12697.
39. Kim, Y. S.; Nam, S. H.; Shim, H. S.; Ahn, H. J.; Anand, M.; Kim, W. B., Electrospun bimetallic nanowires of PtRh and PtRu with compositional variation for methanol electrooxidation. Electrochem. Commun. 2008, 10 (7), 1016-1019.
40. Zhao, X.; Yin, M.; Ma, L.; Liang, L.; Liu, C.; Liao, J.; Lu, T.; Xing, W., Recent advances in catalysts for direct methanol fuel cells. Energy Environ. Sci. 2011, 4 (8), 2736-2753.
41. Lu, Q.; Sun, L.; Zhao, X.; Huang, J.; Han, C.; Yang, X., One-pot synthesis of interconnected Pt95Co5 nanowires with enhanced electrocatalytic performance for methanol oxidation reaction. Nano Res. 2018, 11 (5), 2562-2572.
42. Liu, H.; Li, C.; Chen, D.; Cui, P.; Ye, F.; Yang, J., Uniformly dispersed platinum-cobalt alloy nanoparticles with stable compositions on carbon substrates for methanol oxidation reaction. Scientific Reports 2017, 7 (1), 11421.
43. Zignani, S. C.; Baglio, V.; Gonzalez, E. R.; Arico, A. S., Durability of a PtSn Ethanol Oxidation Electrocatalyst. Chemelectrochem. 2014, 1 (8), 1403-1406.
44. Ma, Y. J.; Wang, H.; Ji, S.; Linkov, V.; Wang, R. F., PtSn/C catalysts for ethanol oxidation: The effect of stabilizers on the morphology and particle distribution. J. Power Sources 2014, 247, 142-150.
45. Kutz, R. B.; Braunschweig, B.; Mukherjee, P.; Behrens, R. L.; Dlott, D. D.; Wieckowski, A., Reaction pathways of ethanol electrooxidation on polycrystalline platinum catalysts in acidic electrolytes. J. Catal. 2011, 278 (2), 181-188.
46. Zhou, W. J.; Song, S. Q.; Li, W. Z.; Zhou, Z. H.; Sun, G. Q.; Xin, Q.; Douvartzides, S.; Tsiakaras, P., Direct ethanol fuel cells based on PtSn anodes: the effect of Sn content on the fuel cell performance. J. Power Sources 2005, 140 (1), 50-58.
47. Lim, D. H.; Choi, D. H.; Lee, W. D.; Lee, H. I., A new synthesis of a highly dispersed and CO tolerant PtSn/C electrocatalyst for low-temperature fuel cell; its electrocatalytic activity and long-term durability. Appl. Catal. B-Environ. 2009, 89 (3-4), 484-493.
48. Switzer, E. E.; Olson, T. S.; Datye, A. K.; Atanassov, P.; Hibbs, M. R.; Cornelius, C. J., Templated Pt-Sn electrocatalysts for ethanol, methanol and CO oxidation in alkaline media. Electrochim. Acta 2009, 54 (3), 989-995.
49. Saleem, F.; Zhang, Z. C.; Xu, B.; Xu, X. B.; He, P. L.; Wang, X., Ultrathin Pt-Cu Nanosheets and Nanocones. J. Am. Chem. Soc. 2013, 135 (49), 18304-18307.
50. Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S. I.; Park, J.; Herron, J. A.; Xie, Z. X.; Mavrikakis, M.; Xia, Y. N., Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349 (6246), 412-416.
51. Chen, Q. L.; Cao, Z. M.; Du, G. F.; Kuang, Q.; Huang, J.; Xie, Z. X.; Zheng, L. S., Excavated octahedral Pt-Co alloy nanocrystals built with ultrathin nanosheets as superior multifunctional electrocatalysts for energy conversion applications. Nano Energy 2017, 39, 582-589.
52. Tan, C. L.; Zhang, H., Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nat. Commun. 2015, 6, 7873.
53. Du, X. T.; Yang, Y.; Liu, J.; Liu, B.; Liu, J. B.; Zhong, C.; Hu, W. B., Surfactant-free and template-free electrochemical approach to prepare well-dispersed Pt nanosheets and their high electrocatalytic activities for ammonia oxidation. Electrochim. Acta 2013, 111, 562-566.
54. Dai, L.; Zhao, Y.; Qin, Q.; Zhao, X. J.; Xu, C. F.; Zheng, N. F., Carbon-Monoxide-Assisted Synthesis of Ultrathin PtCu Alloy Nanosheets and Their Enhanced Catalysis. Chemnanomat. 2016, 2 (8), 776-780.
55. Bauer, J. C.; Chen, X.; Liu, Q.; Phan, T.-H.; Schaak, R. E., Converting nanocrystalline metals into alloys and intermetallic compounds for applications in catalysis. J. Mater. Chem. 2008, 18 (3), 275-282.
56. Novoselov, K.; Mishchenko, A.; Carvalho, A.; Neto, A. C., 2D materials and van der Waals heterostructures. Science 2016, 353 (6298), aac9439.
57. Han, L.; Cui, P. L.; He, H. Y.; Liu, H.; Peng, Z. J.; Yang, J., A seed-mediated approach to the morphology-controlled synthesis of bimetallic copper-platinum alloy nanoparticles with enhanced electrocatalytic performance for the methanol oxidation reaction. J. Power Sources 2015, 286, 488-494.
58. Luoma, S. N., Processes affecting metal concentrations in estuarine and coastal marine sediments. In Heavy metals in the marine environment, CRC Press: 2017, 51-66.
59. Conway, J. R.; Adeleye, A. S.; Gardea-Torresdey, J.; Keller, A. A., Aggregation, dissolution, and transformation of copper nanoparticles in natural waters. Environmental science & technology 2015, 49 (5), 2749-2756.
60. Wu, F.; Zhang, D.; Peng, M.; Yu, Z.; Wang, X.; Guo, G.; Sun, Y., Microfluidic Synthesis Enables Dense and Uniform Loading of Surfactant‐Free PtSn Nanocrystals on Carbon Supports for Enhanced Ethanol Oxidation. Angew. Chem. Int. Ed. 2016, 55 (16), 4952-4956.
61. Zhou, W.; Zhou, Z.; Song, S.; Li, W.; Sun, G.; Tsiakaras, P.; Xin, Q., Pt based anode catalysts for direct ethanol fuel cells. Appl. Catal. B: Environ. 2003, 46 (2), 273-285.
62. Song, H.; Luo, M.; Qiu, X.; Cao, G., Insights into the endurance promotion of PtSn/CNT catalysts by thermal annealing for ethanol electro-oxidation. Electrochim. Acta 2016, 213, 578-586.
63. Geng, X.; Cen, Y.; Sisson, R. D.; Liang, J., An Effective Approach towards the Immobilization of PtSn Nanoparticles on Noncovalent Modified Multi-Walled Carbon Nanotubes for Ethanol Electrooxidation. Energies 2016, 9 (3), 165.
64. Sarmoor, S. S.; Hoseini, S. J.; Fath, R. H.; Roushani, M.; Bahrami, M., Facile synthesis of PtSnZn nanosheet thin film at oil-water interface by use of organometallic complexes: An efficient catalyst for methanol oxidation and p-nitrophenol reduction reactions. Appl. Organomet. Chem. 2018, 32 (1).
65. Voiry, D.; Yang, J.; Chhowalla, M., Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv. Mater. 2016, 28 (29), 6197-6206.
66. Dai, L.; Mo, S.; Qin, Q.; Zhao, X.; Zheng, N., Carbon Monoxide‐Assisted Synthesis of Ultrathin PtCu3 Alloy Wavy Nanowires and Their Enhanced Electrocatalysis. Small 2016, 12 (12), 1572-1577.