簡易檢索 / 詳目顯示

研究生: 張寒瑋
論文名稱: 人造神經網路方法學之建立
Development of a Methodology for Constructing the Artificial Neuronal Networks
指導教授: 張兗君
口試委員: 周韻家
傅建中
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 73
中文關鍵詞: 神經網路海馬迴細胞
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去建立神經網路的研究中,通常會利用微壓印技術在培養基板轉印出特定分子圖案,促使投入的神經細胞貼附到培養基板的特定分子圖案區域,沿著圖案長成幾何神經網路。本研究中建立了一個方法學,試著用和微壓印技術不同系統的方法製成更適合幾何神經網路形成的裝置。實驗中以光學顯影技術製作微米等級的模仁翻製出具有篩板功能的PDMS模板。此模板頂部具有64個圓孔,以8 × 8陣列形式排列,底部則為7 × 7格形網狀溝槽,上下相通。透過加壓手法將PDMS模板貼附到玻片,加入poly-L-lysine (PLL)使其流入孔洞,在玻片上建立較高解析度的格形網狀圖案。投入細胞時利用離心力縮短細胞掉落時間,避免細胞聚集成團降低具有神經細胞的節點數百分比。PDMS模板可侷限神經細胞掉落在PLL圖案中的節點上,並沿著節點連接線生長形成神經網路,此外我們針對低密度神經網路培養調整培養程序。藉由以上方法建立的神經網路,我們利用了活體影像和免疫螢光染色檢測其型態與功能完整度,希望未來將可以與微電極陣列結合應用,進而去了解神經網路對於各種形式的訊號輸入所產生的生化或是生理反應。


    目錄 英文摘要-----------------------------------------------------------ii 中文摘要-----------------------------------------------------------iv 誌謝----------------------------------------------------------------v 目錄---------------------------------------------------------------vi 壹、緒論-------------------------------------------------------------1 貳、材料與方法 實驗材料 (一)、老鼠的育種---------------------------------------------9 (二)、藥品---------------------------------------------------9 (三)、實驗儀器----------------------------------------------10 實驗方法 (一)SU-8微結構的製作----------------------------------------------------------11 (二)PDMS模板的設計與製作--------------------------------------------------13 (三)細胞培養分隔框的設計與製作--------------------------------------------14 (四)加壓膜板用之PDMS長方體的製作--------------------------------------14 (五)PLL網狀圖案的建立--------------------------------------------------------15 (六)加高細胞培養分隔框--------------------------------------------------------16 (七)初代海馬迴神經細胞培養--------------------------------------------------16 (八)免疫螢光染色-----------------------------------------------------------------19 (九)Fluorescein isothiocyanate與poly-L-lysine 的接合 -------------------20 (十)統計方法與分析--------------------------------------------------------------21 參、結果 一、格狀神經網路圖案建立方法改良成果------------------------------------22 二、新方法增加Occupancy rate之培養成果----------------------------------23 三、調整細胞培養方法程序之培養結果---------------------------------------25 四、驗證神經網路型態及功能完整性------------------------------------------26 肆、討論 一、微流體系統建構格狀神經網路之潛在發展性---------------------------31 二、探討神經網路體外培養過程中的問題------------------------------------32 三、神經網路之型態構成與突觸形成---------------------------33 伍、圖表 圖一、方形神經網路培養流程---------------------------------------------------36 圖二、縮減PLL格線線寬之方法------------------------------------------------39 圖三、縮短高體積細胞液中細胞掉落至PDMS模板所需時間之方法---40 圖四、比較只使用圖二的舊方法(old method)和同時使用圖二和圖三的新方法(new method)所建立之神經網路的Occupancy rate-----------------43 圖五、針對低密度細胞培養調整培養方法程序------------------------------44 圖六、以螢光染色觀察體外培養第5天神經網路中軸突與樹突分布情形----------------------------------------------------------------------------------------47 圖七、以螢光染色觀察體外培養第5天神經網路中突觸形成情況-------48 圖八、以螢光染色觀察體外培養第10天神經網路中軸突與樹突分布情形-------------------------------------------------------------------------------------50 圖九、圖八(A)中白色方框內區域放大圖--------------------------------------53 圖十、以螢光染色觀察體外培養第10天神經網路節點中鄰近細胞突觸形成情況----------------------------------------------------------------------------54 圖十一、以螢光染色觀察體外培養第10天神經網路中相鄰節點間突觸形成情況----------------------------------------------------------------------------57 圖十二、以螢光染色觀察體外培養第10天神經網路中神經膠細胞所占比例----------------------------------------------------------------------------------58 圖十三、以螢光染色觀察體外培養第20天神經網路中軸突與樹突分布情形----------------------------------------------------------------------------------60 圖十四、圖十三白色方框區域的放大圖---------------------------------------61 圖十五、圖十四白色方框區域的放大圖---------------------------------------63 圖十六、以螢光染色觀察體外培養第18天神經網路中突觸形成情況--65 圖十七、以螢光染色觀察體外培養第18天神經網路相鄰節點間突觸形成情況-------------------------------------------------------------------------------67 陸、參考文獻--------------------------------------------------------69

    陸、參考文獻

    Beom Jun, S., M. Hynd, N. Dowell-Mesfin, K. Smith, J. Turner, W. Shain and S. June Kim (2005). "Synaptic connectivity of a low density patterned neuronal network produced on the poly-L-lysine stamped microelectrode array." Conf Proc IEEE Eng Med Biol Soc 7: 7604-7607.

    Bhattacharya, S., A. Datta, J. M. Berg and S. Gangopadhyay (2005). "Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength." Microelectromechanical Systems, Journal of 14(3): 590-597.

    Boehler, M. D., S. S. Leondopulos, B. C. Wheeler and G. J. Brewer (2012). "Hippocampal networks on reliable patterned substrates." J Neurosci Methods 203(2): 344-353.

    Branch, D. W., B. C. Wheeler, G. J. Brewer and D. E. Leckband (2000). "Long-term maintenance of patterns of hippocampal pyramidal cells on substrates of polyethylene glycol and microstamped polylysine." IEEE Trans Biomed Eng 47(3): 290-300.

    Chance, F. S., S. B. Nelson and L. F. Abbott (1998). "Synaptic depression and the temporal response characteristics of V1 cells." J Neurosci 18(12): 4785-4799.

    Chang, J. C., G. J. Brewer and B. C. Wheeler (2003). "A modified microstamping technique enhances polylysine transfer and neuronal cell patterning." Biomaterials 24(17): 2863-2870.

    Clark, P., P. Connolly, A. S. Curtis, J. A. Dow and C. D. Wilkinson (1990). "Topographical control of cell behaviour: II. Multiple grooved substrata." Development 108(4): 635-644.

    Corey, J. (2003). "Substrate patterning: an emerging technology for the study of neuronal behavior." Experimental Neurology 184: 89-96.

    Curtis, A. and C. Wilkinson (1997). "Topographical control of cells." Biomaterials 18(24): 1573-1583.

    Dillon, C. and Y. Goda (2005). "The actin cytoskeleton: integrating form and function at the synapse." Annu Rev Neurosci 28: 25-55.

    Edwards, F. A., A. Konnerth and B. Sakmann (1990). "Quantal analysis of inhibitory synaptic transmission in the dentate gyrus of rat hippocampal slices: a patch-clamp study." J Physiol 430: 213-249.

    Esch, T., V. Lemmon and G. Banker (1999). "Local presentation of substrate molecules directs axon specification by cultured hippocampal neurons." J Neurosci 19(15): 6417-6426.

    Heller, D. A., V. Garga, K. J. Kelleher, T. C. Lee, S. Mahbubani, L. A. Sigworth, T. R. Lee and M. A. Rea (2005). "Patterned networks of mouse hippocampal neurons on peptide-coated gold surfaces." Biomaterials 26(8): 883-889.

    Herculano-Houzel, S. (2009). "The human brain in numbers: a linearly scaled-up primate brain." Front Hum Neurosci 3: 31.

    Hopfield, J. J. (1982). "Neural networks and physical systems with emergent collective computational abilities." Proc Natl Acad Sci U S A 79(8): 2554-2558.

    Hu, J. Y., O. Baussi, A. Levine, Y. Chen and S. Schacher (2011). "Persistent long-term synaptic plasticity requires activation of a new signaling pathway by additional stimuli." J Neurosci 31(24): 8841-8850.

    Jang, K.-J., M. S. Kim, D. Feltrin, N. L. Jeon, K.-Y. Suh and O. Pertz (2010). "Two Distinct Filopodia Populations at the Growth Cone Allow to Sense Nanotopographical Extracellular Matrix Cues to Guide Neurite Outgrowth." PLoS ONE 5(12): e15966.

    Jungblut, M., W. Knoll, C. Thielemann and M. Pottek (2009). "Triangular neuronal networks on microelectrode arrays: an approach to improve the properties of low-density networks for extracellular recording." Biomed Microdevices 11(6): 1269-1278.

    Kaplan, M. P., K. S. Wilcox and M. A. Dichter (2003). "Differences in multiple forms of short-term plasticity between excitatory and inhibitory hippocampal neurons in culture." Synapse 50(1): 41-52.

    Lauer, L., S. Ingebrandt, K. Scholl and A. Offenhauer (2001). "Aligned microcontact printing of biomolecules on microelectronic device surfaces." Biomedical Engineering, IEEE Transactions on 48(7): 838-842.

    Lauer, L., C. Klein and A. Offenhausser (2001). "Spot compliant neuronal networks by structure optimized micro-contact printing." Biomaterials 22(13): 1925-1932.

    Li, N., A. Tourovskaia and A. Folch (2003). "Biology on a chip: microfabrication for studying the behavior of cultured cells." Crit Rev Biomed Eng 31(5-6): 423-488.

    McDonald, J. C. and G. M. Whitesides (2002). "Poly(dimethylsiloxane) as a material for fabricating microfluidic devices." Acc Chem Res 35(7): 491-499.

    Nam, Y., J. C. Chang, B. C. Wheeler and G. J. Brewer (2004). "Gold-coated microelectrode array with thiol linked self-assembled monolayers for engineering neuronal cultures." IEEE Trans Biomed Eng 51(1): 158-165.

    Novak, J. L. and B. C. Wheeler (1988). "Multisite hippocampal slice recording and stimulation using a 32 element microelectrode array." J Neurosci Methods 23(2): 149-159.

    Rogers, J. A. and R. G. Nuzzo (2005). "Recent progress in soft lithography." Materials Today 8(2): 50-56.

    Scholl, M., C. Sprossler, M. Denyer, M. Krause, K. Nakajima, A. Maelicke, W. Knoll and A. Offenhausser (2000). "Ordered networks of rat hippocampal neurons attached to silicon oxide surfaces." J Neurosci Methods 104(1): 65-75.

    Singhvi, R., A. Kumar, G. P. Lopez, G. N. Stephanopoulos, D. I. Wang, G. M. Whitesides and D. E. Ingber (1994). "Engineering cell shape and function." Science 264(5159): 696-698.

    Stenger, D. A., J. J. Hickman, K. E. Bateman, M. S. Ravenscroft, W. Ma, J. J. Pancrazio, K. Shaffer, A. E. Schaffner, D. H. Cribbs and C. W. Cotman (1998). "Microlithographic determination of axonal/dendritic polarity in cultured hippocampal neurons." J Neurosci Methods 82(2): 167-173.

    Suzuki, I., Y. Sugio, H. Moriguchi, Y. Jimbo and K. Yasuda (2004). "Modification of a neuronal network direction using stepwise photo-thermal etching of an agarose architecture." J Nanobiotechnology 2(1): 7.

    Taketani, M., M. Baudry, J. Whitson, D. Kubota, K. Shimono, Y. Jia and M. Taketani (2006). Multi-Electrode Arrays: Enhancing Traditional Methods and Enabling Network Physiology. Advances in Network Electrophysiology, Springer US: 38-68.

    Thomas, C. A., Jr., P. A. Springer, G. E. Loeb, Y. Berwald-Netter and L. M. Okun (1972). "A miniature microelectrode array to monitor the bioelectric activity of cultured cells." Exp Cell Res 74(1): 61-66.

    Vogt, A. K., L. Lauer, W. Knoll and A. Offenhausser (2003). "Micropatterned substrates for the growth of functional neuronal networks of defined geometry." Biotechnol Prog 19(5): 1562-1568.

    Vogt, A. K., G. Wrobel, W. Meyer, W. Knoll and A. Offenhausser (2005). "Synaptic plasticity in micropatterned neuronal networks." Biomaterials 26(15): 2549-2557.

    Wheeler, B. C. and G. J. Brewer (2010). "Designing Neural Networks in Culture: Experiments are described for controlled growth, of nerve cells taken from rats, in predesigned geometrical patterns on laboratory culture dishes." Proc IEEE Inst Electr Electron Eng 98(3): 398-406.

    Wyart, C., C. Ybert, L. Bourdieu, C. Herr, C. Prinz and D. Chatenay (2002). "Constrained synaptic connectivity in functional mammalian neuronal networks grown on patterned surfaces." J Neurosci Methods 117(2): 123-131.

    Xia, Y. and G. M. Whitesides (1998). "SOFT LITHOGRAPHY." Annual Review of Materials Science 28(1): 153-184.

    Zeng, H. C., Y. C. Ho, S. T. Chen, H. I. Wu, H. W. Tung, W. L. Fang and Y. C. Chang (2007). "Studying the formation of large cell aggregates in patterned neuronal cultures." J Neurosci Methods 165(1): 72-82.

    Zhang, W. and D. L. Benson (2001). "Stages of synapse development defined by dependence on F-actin." J Neurosci 21(14): 5169-5181.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE