簡易檢索 / 詳目顯示

研究生: 藍敏菁
論文名稱: 一位國小三年級教師設計臆測任務融入數學教學之行動研究
The Action Research of a Third-Grade Teacher Designing Conjecturing Task to Mathematics Teaching
指導教授: 林碧珍
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 118
中文關鍵詞: 數學臆測數學臆測任務數學臆測教學
外文關鍵詞: conjecturing, mathematics conjecturing task, mathematics conjecturing teaching
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是描述研究者以設計臆測任務融入國小三年級數學教學的行動研究歷程,說明研究者在設計數學臆測任務及進行數學臆測教學時所遭遇到的問題及因應策略,進而從中了解教學問題及學生的學習情形,透過因應的解決策略來增進自己的數學教學知識及數學教學專業知能。
    研究者以自己任教的三年級班級為研究場域,並在數理研究所進修時加入跨校教師數學專業成長團學習數學臆測教學。研究者以學生現有的數學教科書教材(三上「圓」及三下「面積」兩個單元)進行教材分析及前測分析,發現教材的不足及學生的迷思,進而設計數學臆測任務,並以數學臆測教學模式的五個階段(造例組織觀察、發現關係並提出猜想、驗證猜想、猜想一般化、證明一般化)來融入數學教學活動以達到教學目標。研究期間,研究者透過教材分析、前測分析、教學實踐錄影錄音、學生解題工作單記錄、成長團隊專業對話、教師教學日誌、諍友討論等資料的蒐集與分析,進行教學反省及改進,讓研究者對於學生的學習情形及自身的教學專業有更多的了解及成長。
    研究結果發現,一個設計良好的數學臆測任務,可以讓數學臆測教學的進行更加順利,因此,教師的數學專業知識及分析教材能力,對於設計數學臆測任務是有所幫助且重要的。在實施數學臆測教學方面,「造例組織觀察」階段透過臆測任務的活動設計能讓學生建立多例來組織觀察出規律;「發現關係並提出猜想」階段要鼓勵學生寫出自己的數學想法及發現,來引動學生的豐富猜想;「驗證猜想」階段讓學生經由發表及聆聽,判斷此猜想的正確性,當小組提出的猜想經過驗證,就成為全班的猜想;「猜想一般化」階段是將從有限例觀察得到的全班猜想繼續擴充到其他所有類型,但因為三年級學生的數學知識尚未完整,因此只能以「限制條件」擴充;「證明一般化」階段則是培養學生能運用已知的事實或所學的數學知識進行演繹推理來證明尚未證實的猜想,但因為三年級學生的數學知識還不夠豐富,因此可以運用說理來說服別人。最後,本研究對於有興趣進行數學臆測教學的教育者分別對數學臆測任務設計、數學臆測教學及未來研究方向提出建議。


    This research describes the process of merging the designing of conjecturing task into 3rd grade math classes. During the designing mathematics conjecturing task and the teaching of mathematical conjecture teach, the problems faced with and the strategies come up by the researcher are demonstrated, in order to understand the issues of the teaching and learning process. My professional and teaching knowledge in math has been broaden by the strategies aforementioned.
    The researcher takes her own classes as the research area and incorporates cross-school teacher professional growth team into mathematics conjecturing teaching during her master degree in math and science. She performed the analysis of teaching material and pretest with the given math textbooks for two chapters: Circle (the first semester) and Area (the second semester). Throughout the process, the insufficiency of the material and the confusion of the students inspired the mathematics conjecturing task. Thus, the five stages in the framework of mathematics conjecturing teaching mode (product - organization - observing example, discovering relations and proposing hypotheses, verifying the hypotheses, generalizing the hypotheses and generalizing the proofs) are included in the math teaching activities to complete the teaching goals. During the research, the researcher has gained improvements and self-reflections through the analysis of teaching material and pretest, the recordings of classes, student worksheets, conversations among the growth team, teaching journals and discussions between critical friends . As a result, the researcher is able to enhance her understaning of the profession of teaching and the learning process of students.
    From the result, a well-designed conjecturing task in mathematics helps teaching progress more smoothly, so a teacher's professional knowledge and the ability to analyze the teaching material is critical as well as benefical for designing conjecturing task. From the aspect of applying conjecturing task in mathematics, the stage of " product - organization - observing example "" helps students to construct more cases to find patterns through conjecturing task. "Discovering relations and proposing hypotheses" encourages students to express their thoughts and discovery as well as stimulate their creativity. "Verifying the hypotheses" allows students to determine the correctness of the hypotheses by presenting and listening. When a hypothesis from a group is verified, it becomes the hypothesis of the entire class. "Generalizing the hypotheses" expands the observations to all types from that of limited examples. Due to the incomplete knowledge in math of the third grade students, the expansion is only through limited constraints. "Generalizing the proofs" educates students to exercise induction with known facts to prove the hypotheses. Since the math knowledge is not enough for 3rd grade students, they can convince others with reason. Lastly, this research proposes suggestions to educators who are interested in designing and teaching of mathematics conjecturing as well as research directions in the future.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與研究問題 4 第三節 名詞釋義 4 第二章 文獻探討 5 第一節 數學臆測 5 第二節 數學論證 17 第三章 研究方式 26 第一節 行動研究 26 第二節 研究情境 27 第三節 研究架構與研究流程 30 第四節 問題起點與擬定行動策略 33 第五節 資料的蒐集與分析 34 第六節 資料的三角校正 38 第四章 研究結果 39 第一節 設計數學臆測任務所遭遇的問題與因應策略 39 第二節 數學臆測任務融入三年級教學活動所遭遇的問題及因應策略 57 第五章 結論與建議 87 第一節 研究結論 87 第二節 建議 92 參考文獻 94 中文部分 94 英文部分 96

    中文部分
    林鈺芳(2010)。Toulmin論證模式在國小資優課堂的教學實踐。國立臺北教育大學自然科學教育學系碩士論文,未出版,臺北。
    林鈺芳、趙毓圻、李乙明(2010年5月):Toulmin 論證模式教學對國小資優生批判思考及論證能力之影響。發表於2010兩岸資優與創造力教育發展研討會,臺北。
    林福來(2007)。青少年數學論證「學習與教學」理論之研究:總計畫(4/4)。行政院國家科學委員會專題研究計畫期末報告。(計畫編號:NSC94-2521-S-003-001),未出版。
    林福來(2008)。數學臆測活動的設計、教學與評量:總計畫(1/3)。行政院國家科學委員會補助專題研究計畫期中報告。(計畫編號NSC 96-2521-S-003-001-MY3),未出版。
    林福來(2010)。數學臆測活動的設計、教學與評量:總計畫(3/3)。行政院國家科學委員會補助專題研究計畫總結報告,計畫編號:NSC96-2521-S─003-001-MY3。
    林福來(2015)。主動思考:貼近數學的心跳。台北市:開學文化。
    林碧珍(2001)。發展國小教師之學生數學認知知識—理論結合實務研究取向的教師專業發展。台北:師大書苑。
    林碧珍(2013)。師資培育者幫助教師協助學生學習數學的教師專業發展研究。行政院國家科學委員會專題研究計畫期末報告。(計畫編號:NSC99-2511-S134-005-MY3),未出版。
    林碧珍(2014)。數學教師與其師資培育者的專業發展:統整理論建構與實務應用子計畫一:國小在職教師設計數學臆測活動的專業成長研究。行政院科技部補助專題研究計畫。(計畫編號:NSC 100-2511-S-134-006-MY3),未出版。
    林碧珍(2015)。國小三年級課室以數學臆測活動引發學生論證初探。科學教育學刊,第二十三卷第一期83-110。
    林碧珍、周欣怡(2013年12月)。國小學生臆測未知結果之論證結構:以四邊形沿一對角線剪開為例。「第29屆科學教育國際研討會」發表之論文,國立彰化師範大學。
    林碧珍、馮博凱(2013年12月)。國小學生反駁錯誤命題的論證結構-以速率單元為例。「第29屆科學教育國際研討會」發表之論文,國立彰化師範大學。
    林碧珍、鍾雅芳(2013)。六年級學生解決數字規律性問題的數學臆測思維歷程。2013 年第五屆 科技與數學教育國際學術研討會暨數學教學工作坊論文集(pp.100-110)(Proceeding of 2013 The Fifth International Conference on Technology and Mathematics Education and Workshop of Mathematics Teaching),6 月 8-9 日。國立台中教育大學數學教育學系。
    林碧珍、蔡文煥(2014)。數學教師與其師資培育者的專業發展:統整理論建構與實務應用─ 子計畫一:國小在職教師設計數學臆測活動的專業成長研究。行政院科技部補助專題研究計畫。(計畫編號:NSC100-2511-S-134-006-MY3),未出版。
    張少偉(2010)。實施以臆測為中心的教學對七年級個案學生數學論證能力影響之研究。國立彰化師範大學科學教育研究所碩士論文,未出版,彰化市。
    教育部(2006)。國民中小學九年一貫課程綱要。台北市:教育部。
    教育部(2008)。國民中小學九年一貫課程綱要數學學習領域。臺北:作者。
    陳英娥、林福來(1998)。數學臆測的思維模式。科學教育學刊,第六卷第二期191-218。
    陳英娥(1998)。數學臆測:思維與能力的研究。國立台灣師範大學科學教育研究所博士論文,未出版,台北市。
    陳英娥(2002)。教室中的數學論證之研究。教育研究資訊,10(6),111-132。
    陳惠邦(1998)。教育行動研究。臺北市:師大書苑。
    靳知勤、楊惟程、段曉林(2010a):引導式Toulmin論證模式對國小學童在科學讀寫表現上的影響。科學教育學刊,18(5),443-467。
    靳知勤、楊惟程、段曉林(2010b):國小學童的非形式推理之研究─以生物複製議題之引導式論證為例。課程與教學季刊,13(1),209-232。
    歐用生(1999)。行動研究與學校教育革新。國民教育,39(5),2-12。
    蔡忠翰(2011)。高一數理資優班與普通班學生在數列級數單元的解題歷程中所展現的臆測思維與數學素養之比較研究。未出版碩士論文。國立彰化師範大學資賦優異研究所。
    蔡清田(2000)。教育行動研究。台北:五南。

    英文部分
    Balacheff, N. (1988). Aspects of proof in pupils’ practice of school mathematics. In D. Pimm (Ed), Mathematics, teachers and children,(pp.216-235). Stoughton: Hodder education.
    Billig, M. (1987). Arguing and thinking: A rhetorical approach to social psychology. Cambridge: Cambridge University Press.
    Brown, S. & Walter, M. 1993. Problem posing: Reflections and applications. Hillsdale,NJ: Lawrence Elbaum Associates.
    Cañadas, M. C., & Castro, E. (2005). A proposal of categorization for analyzing inductive reasoning. In M. Bosch (Ed.), Proceedings of the CERME 4 international conference (pp. 401-408). Catalonia, Spain: SantFeliu de Guíxols.
    Cañadas, M. C., Deulofeu, J., Figueiras, L., Reid, D., & Yevdokimov, A. (2007). The conjecturing process: Perspectives in theory and implications in practice.Journal of Teaching and Learning, 5(1), 55–72.
    Cantlon, D.(1998). Kids + conjecture=mathematics power. Teaching Children Mathematics, 5(2), 108-112.
    Clark, D. B., & Sampson, V. D. (2007). Personally-seeded discussions to scaffold online argumentation. International Journal of Science Education, 29(3), 253-277.
    Douek, N. (1999). Argumentative aspects of proving: Analysis of some undergraduate mathematics students’ performances.In O. Zaslavsky (Eds.), Proceedings of the 23nd conference of the international group for the psychology of mathematics education (Vol.2,pp. 273-288).Haifa,Israel: PME.
    Driver, R., Newton, P., & Osborne, J.(2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287-312.
    Jimenez-Aleixandre, M.(2007). Designing argumentation learning environments. In S. Erduran & M. Jimenez-Aleixandre(Eds.), Argumentation in science education: Perspectives from classroom-based research(pp. 91-115). London: Springer.
    Jonassen, D., & Kim, B.(2010). Arguing to learn and learning to argue: design justifications and guidelines. Educational Technology Research and Development, 58(4), 439-457.
    Knipping, C., & Reid, D.(2013). Revealing structures of argumentations in classroom proving processes. In. A. Aberdein & I. J. Dove(Eds.), The argument of mathematics(pp. 119–146). New York: Springer Dordrecht.
    Kuhn, D.(1991). The skill of argument. New York: Cambridge University Press.
    Kuhn, D.(1993). Science argument: implications for teaching and learning scientific thinking. Science Education, 77, 319-337.
    Latkatos, I.(1976). Proofs and refutations: The logic of mathematical discovery. NewYork: Cambridge University Press
    Lakatos, I.(1978). A renaissance of empiricism in the recent philosophy of mathematics?In J. Worrall & G. Currie(Eds.), Mathematics, science and epistemology(pp. 24-42).NY: Press Syndicate of the University of Cambridge.
    Lin, F.-L., & Yu, J.-W.(2005).False proposition-As a means for making conjectures in mathematics classrooms. Paper presented at the Asian Mathematics Conference2005, SingaporeJuly 20-23.
    Lin, F.-L.(2006). Designing mathematics conjecturing activities to foster thinking and constructiong actively. Paper presented at the Keynote address in the APEC-TSUKUBA International Conference, Japan.
    Lin, F.-L., Yang, K.-L., Lee, K.-H., Tabach, M., & Stylianides, G.(2012). Task designing for conjecturing and proving: developing principles based on practical tasks. In M. d. Villiers & G. Hanna(Eds.), Proofs and proving in mathematics education, ICME Study 19: Springer.
    Marttunen, M.(1994). Assessing argumentation skill among Finnish university students.Learning and Instruction, 4, 175-191.
    Mason, J., Burton, L., & Stacey, K.(1985). Thinking mathematically. London: Addison-Wesley Publishing Company.
    Miller, M.(1987). Argumentation and cognition. In M. Hickmann(Ed.). Social and functional approaches to language and thought. New York: Academic Press.
    Norton, A.(2008). Josh’s operational conjectures: Abductions of splitting operation andthe construction of new fractional schemes. Journal for Research in Mathematics Education, 39(4), 401-430.
    Popper, K. R.(1963). Conjectures and refutations: The growth of scientific knowledge. London, England: Routledge and Began Paul.
    Polya, G.(1954). Mathematics and plausible reasoning. London, England: Oxford University Press.
    Polya, G.(1962). Mathematical discovery: On understanding, learning and teachingproblem solving. New York: Wiley Press.
    Polya, G.(1968). Mathematics and plausible reasoning(2nd Ed.). Princeton, NJ: Princeton University Press.
    Reid, D. A.(2002). Conjecture and refutations in grade 5 mathematics. Journal for Research in Mathematics Education, 33(1), 5-29.
    Simon, M. A.(1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26 , 114-145.
    Simon, S., Erduran, S., & Osborne, J.(2006). Learning to teach argumentation: Research and development in the science classroom. International Journal of Science Education, 28(2-3), 235-260.
    Stein, M. K., & Lane, S.(1996). Instructional tasks and the development of student capacity to think and reason: An analysis of the relationship between teaching and learning in a reform mathematics project. Educational Research and Evaluation, 2, 50–80.
    Stylianides, A. J.(2007). Proof and proving in school mathematics. Journal for research in mathematics education, 38(3), 289–321.
    Stylianides, A. J., &Ball, D. L.(2008). Understanding and describing mathematical knowledge for teaching: knowledge about proof for engaging students in the activity of proving. Journal of Mathematics Teacher Education 11:307-332.
    Toulmin, S. E.(1958). The uses of argument. Cambridge: Cambridge University Press.
    Van Eemeren, F. H.(1995). A word of difference: The rich state of argumentation theory.Informal Logic, 17(2), 144-158.
    Yevdokimov, O.(2005). About a constructivist approach for stimulating students’ thinking to produce conjectures and their proving in active learning of geometry. In M. Bosch (Ed.), Proceedings of the CERME 4 international conference(469-480). Sant Feliu de Guíxols, Spain. Published online at http://ermeweb.free.fr/CERME4/

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE