簡易檢索 / 詳目顯示

研究生: 戴英修
Dai, Ying-Siou
論文名稱: 考慮商品異質性改善協同過濾推薦系統
Exploiting Item Heterogeneity for Collaborative Filtering Recommendation
指導教授: 魏志平
Wei, Chih-Ping
王俊程
Wang, Jyun-Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 科技管理研究所
Institute of Technology Management
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 39
中文關鍵詞: 推薦系統協同過濾推薦技術商品異質性內容加權式協同過濾推薦技術
外文關鍵詞: Recommendation Systems, Collaborative Filtering Recommendation, Item Heterogeneity, Content-Weighted Collaborative Filtering Recommendation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在今日電子商務與知識經濟盛行的環境中,網路上大量流通的資訊成為我們主要
    的資訊來源管道,但資訊使用者卻也面臨了資訊超載的挑戰,因此必須尋求可以
    協助過濾與挑選商品的篩選機制。同時,線上商家為了提高顧客滿意度與忠誠度,
    也需要可以協助加強顧客關係維護的機制。推薦系統便是因應資訊超載與加強顧
    客關係維護而產生的一種解決之道,有了推薦系統的服務,資訊提供者便可以適
    時地提供合適的產品給使用者,同時使用者也可以免去因面臨過多商品資訊而無
    法做出決策的困境。在眾多已發展的推薦技術中,協同過濾推薦機制
    (collaborative filtering approach)是其中最成功且最廣受採用的推薦技術,
    但是這項推薦技術卻因為沒有考慮到受推薦的商品彼此間的差異性,亦即是當計
    算使用者相似度以及進行使用者喜好預測時,所有的商品評分都被視為是同等重
    要的,如此一來可能導致參考不可靠的使用者意見,以致無法達到理想的推薦效
    果。因此,在本研究中,我們提出一個考慮個別商品內容差異性的協同過濾推薦
    技術(item-based content-weighted collaborative filtering approach),藉
    以解決傳統協同過濾技術不考慮商品異質性的缺點。實驗結果顯示本研究所提出
    的方法的確可以在考慮內容差異性的情況下,提供比其他兩種協同過濾方式更高
    的預測準確度(prediction accuracy),同時,為了進一步提升可預測的涵蓋範
    圍(coverage),我們也提出一個結合傳統協同過濾技術的混合方法(hybrid
    approach),其實驗結果也顯示所提出的混合方法,可以達到與傳統協同過濾技
    術相同的可預測的涵蓋範圍,而仍然有較佳的推薦效果。


    In today’s electronic commerce and knowledge economy environments, information
    users may experience information overload and seek for e-services to help them in
    filtering and selecting from an overwhelming array of product information. Online
    merchandisers may also seek to better manage customer relationships that lead to
    higher customer satisfaction and loyalty. In response, recommendation systems have
    emerged as a class of e-service that are not only address the challenge of information
    overload by suggesting products of greatest interest to users, but also facilitates
    organizations better managing their customer relationships. Among various
    recommendation techniques, the collaborative filtering approach is the most
    successful and widely adopted one. However, the basic design of traditional
    collaborative filtering approach ignores item heterogeneities during the
    recommendation process. That is, all the user preferences on items are deemed
    identically important and given an equal weight in measuring user similarities and
    predicting user preferences. This may take unreliable users into consideration and
    therefore, lead to poor recommendations. In this research, we design an item-based
    content-weighted collaborative filtering approach to improve the recommendation
    effectiveness by considering the content similarities of items. We conduct a serious of
    experiments to evaluate our proposed approach. The empirical evaluation
    demonstrates that our proposed approach can achieve better prediction accuracy than
    those of the benchmarks. To further promote the prediction coverage of our proposed
    approach, we also create a hybrid approach by combing our proposed approach with
    the traditional one. The corresponding experimental results also show that the hybrid
    approach can achieve the same coverage as the traditional one and its prediction
    accuracy is still better than that of the traditional one.

    VI    Contents 摘要............................................................................................................................... II ABSTRACT ............................................................................................................... III 致謝詞 .......................................................................................................................... V CONTENTS............................................................................................................... VI LIST OF FIGURES ............................................................................................... VIII LIST OF TABLES ..................................................................................................... IX CHAPTER 1 INTRODUCTION ................................................................................ 1 1.1 RESEARCH BACKGROUND ..................................................................................... 1 1.2 RESEARCH MOTIVATION AND OBJECTIVES ............................................................ 2 1.3 ORGANIZATION OF THE THESIS .............................................................................. 4 CHAPTER 2 LITERATURE REVIEW .................................................................... 5 2.1 COLLABORATIVE FILTERING APPROACH ................................................................ 5 2.2 CLUSTER-BASED CONTENT-WEIGHTED COLLABORATIVE FILTERING APPROACH . 9 CHAPTER 3 ITEM-BASED CONTENT-WEIGHTED COLLABORATIVE FILTERING APPROACH ........................................................................................ 14 3.1 ITEM SIMILARITY ESTIMATION ............................................................................ 15 3.2 USER SIMILARITY ESTIMATION ........................................................................... 16 3.3 NEIGHBORHOOD FORMATION .............................................................................. 18 3.4 PREFERENCE PREDICTION ................................................................................... 19 CHAPTER 4 EMPIRICAL EVALUATION ............................................................ 20 4.1 EVALUATION DATASET ........................................................................................ 20 4.2 EVALUATION METRICS ........................................................................................ 21 4.3 PARAMETER TUNING ........................................................................................... 22 4.3.1 Parameter Tuning of CF ....................................................................................................... 22 4.3.2 Parameter Tuning of CBCW ................................................................................................ 23 4.3.3 Parameter Tuning of IBCW ................................................................................................. 25 4.4 COMPARATIVE EVALUATION RESULTS ................................................................. 29 4.5 EFFECT OF SIGNIFICANCE WEIGHTING FACTOR ................................................... 31 4.6 EFFECT OF ITEM SIMILARITY AVERAGE ............................................................... 32 CHAPTER 5 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS .... 34 REFERENCE ............................................................................................................. 37

    37 
     
    References
    Balabanovic, M. and Shoham, Y., “Fab: Content-based, Collaborative
    Recommendation,” Communications of the ACM, Vol. 40, No. 3, 1997,
    pp.66-72.
    Basu, C., Hirsh, H., and Cohen, W., “Recommendation as Classification: Using Social
    and Content-Based Information in Recommendation,” Proceedings of the 15th
    National Conference on Artificial Intelligence (AAAI-98), 1998, pp.714-720.
    Berson, A. and Smith, S. J., Data Warehousing, Data Mining & OLAP, McGraw-Hill,
    Inc., 1997.
    Breese, J. S., Heckerman, D. and Kadie, C., “Empirical Analysis of Predictive
    Algorithms for Collaborative Filtering,” Proceedings of the 14th Annual
    Conference on Uncertainty in Artificial Intelligence (UAI-98), 1998, pp.43-52.
    Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D. and Sartin, M.,
    “Combining Content-based and Collaborative Filters in an Online Newspaper,”
    Proceedings of the ACM SIGIR’99 Workshop on Recommender Systems:
    Algorithms and Evaluation, 1999.
    Goldberg, D., Nichols, D., Oki, B. M. and Terry, D., “Using Collaborative Filtering to
    Weave an Information Tapestry,” Communications of the ACM, Vol.35, No.12,
    1992, pp.61-70.
    Good, N., Schafer, J., Konstan, J., Borchers, A., Sarwar, B., Herlocker, J. and Riedl, J.,
    “Combining Collaborative Filtering with Personal Agents for Better
    Recommendations,” Proceedings of the 1999 Conference of the American
    Association of Artificial Intelligence (AAAI-99), 1999, pp.439-446.
    Haubl, G. and Murry K.B., “Preference Construction and Persistence in Digital
    Marketpaces: The Role of Electronic Recommendation Systems,” Journal of
    Consumer Psychology, Vol. 13, No. 1&2, pp. 75-91.
    Herlocker, J., Konstan, J., Borchers, A. and Riedl, J., “An Algorithmic Framework for
    Performing Collaborative Filtering,” Proceedings of the 22nd Annual
    International ACM SIGIR Conference on Research and Development in
    Information Retrieval, 1999, pp.230-237.
    Jin, X., Zhou, Y., and Mobasher, B., "A maximum entropy web recommendation
    system: combining collaborative and content features," Proceedings of the
    11th ACM SIGKDD International Conference on Knowledge Discovery in
    38 
     
    Data mining,2005, pp.612-617
    Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R. and Riedl, J.,
    “GroupLens: Applying Collaborative Filtering to Usenet News,”
    Communications of the ACM, Vol. 40, No. 3, 1997, pp.77-87.
    Lang, K., “News Weeder: Learning to Filter Netnews,” Proceedings of the 12th
    International Conference on Machine Learning, 1995, pp.331-339.
    Li, Q., & Kim, B., "An approach for combining content-based and collaborative
    filters," Proceedings of the 6th International Workshop on Information
    Retrieval with Asian Languages , Vol. 11, 2003, pp.17-24.
    Linden, G., Smith, B., & York, J., "Amazon.com recommendations: Item-to-item
    collaborative filtering," Internet Computing, IEEE, Vol. 7, No. 1, 2003, PP.
    76-80.
    Melville, P., Mooney, R. J., and Nagarajan, R., “Content-Boosted Collaborative
    Filtering for Improved Recommendations,” Proceedings of the Eighteenth
    National Conference on Artificial Intelligence (AAAI-2002), 2002, pp.
    187-192.
    Pazzani, M., Muramatsu, J. and Billsus, D., “Syskill & Webert: Identifying Interesting
    Webs,” Proceedings of the 13th National Conference on Artificial Intelligence,
    1996, pp.54-61.
    Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P. and Riedl, J., “GroupLens: An
    Open Architecture for Collaborative Filtering of Netnews,” Proceedings of the
    Conference on Computer Supported Cooperative Work (CSCW), 1994,
    pp.175-186.
    Rucker, J. and Polanco, M. J., “Siteseer: Personalized Navigation for the Web,”
    Communications of the ACM, Vol. 40, No. 3, 1997, pp.73-76.
    Sarwar, B. M., Karypis, G., Konstan, J. A. and Riedl, J., “Analysis of
    Recommendation Algorithms for E-commerce,” Proceedings of the 2th ACM
    Conference on Electronic Commerce, 2000, pp.158-167.
    Schafer, J. B., Konstan, J. and Riedl, J., “Recommendation Systems in E-commerce,”
    Proceedings of the ACM Conference on Electronic Commerce, 1999, pp.
    158-166
    Schafer, J. B., Konstan, J. and Riedl, J., “E-Commerce Recommendation
    Applications,” Data Mining and Knowledge Discovery, Vol. 5, No. 1, 2001,
    pp.115-153.
    Shardanand, U. and Maes, P., “Social Information Filtering: Algorithms for
    Automating Word of Mouth,” Proceedings of the ACM CHI’95 Conference on
    Human Factors in Computing Systems, 1995, pp.210-217.
    Tran, T. and Cohen, R., “Hybrid Recommender Systems for Electronic Commerce,”
    Proceedings of the AAAI-2000 Workshop on Knowledge-based Electronic
    Markets, 2000.
    Voorhees, E. M., “Implementing Agglomerative Hierarchical Clustering Algorithms
    for Use in Document Retrieval,” Information Processing and Management,
    Vol. 22, 1986, pp.465-476.
    Wei, C., Chiang, R., Tseng, C., and Yang, C., “Web Recommendation Services: A
    Cluster-based Collaborative Filtering Approach,” Working Paper, National
    Taiwan University, 2010.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE